°ÀÇ °³¿ä 
             
               ÀÌ»ê¼öÇÐ(Discrete 
            Mathematics, ìÆß¤â¦ùÊ)À̶õ ¿¬¼ÓÀû ¼ºÁúÀ» °®´Â ´ë»ó°ú´Â ´Þ¸® ÀÌ»êÀûÀÎ 
            ¾ç ¶Ç´Â À̻걸Á¶¸¦ °®´Â ´ë»ó¿¡ ´ëÇÏ¿©  ¼öÇÐÀûÀ¸·Î ºÐ·ùÇϰí 
            Á¤¸®Çϸç, ³í¸®ÀûÀ¸·Î »ç°íÇÏ¿© ¹®Á¦¸¦ ÇØ°áÇÏ´Â ¿©·¯ ÀÌ·ÐÀ» ÅëÆ²¾î 
            ´Ù·ç´Â Çй®À» ¸»ÇÑ´Ù. ¶Ç,±¸Ã¼ÀûÀ̰í ÀÌ»êÀûÀÎ ¿©·¯ ¹®Á¦¸¦ ´Ù·ç¹Ç·Î 
            Concrete Mathematics¶ó°íµµ ºÎ¸¥´Ù.   
               º» 
            °Á¿¡¼´Â ÀÌ»ê¼öÇÐÀÇ ¿©·¯ ÀÌ·Ð Áß¿¡¼ ÀüÅëÀû Á¶ÇÕ·ÐÀÇ ¿µ¿ªÀÎ ¼±Åðú 
            ¹è¿ÀÇ ´Ù¾çÇÑ ÀÌ·Ð, Fibonacci ¼ö¿°ú °ü·ÃÇÑ ¿©·¯ ÀÌ·Ð, ¿©·¯ °¡Áö 
            recursion¿¡ °üÇÑ ÀÌ·Ð, ±×·¡ÇÁÀÌ·Ð, ¾Ë°í¸®Áò, µðÀÚÀΰú ÃÊµî ¾ÏÈ£ÀÌ·Ð, 
            ÃÖÀûȹ®Á¦ µîÀ» ÇнÀÇÔÀ¸·Î½á Çö´ë¼öÇÐÀÇ »õ·Î¿î ¿µ¿ªÀ¸·Î ¿©·¯ °¡Áö 
            Áß¿äÇÑ ÀÀ¿ëÀ» °®°í ÀÖ´Â ÀÌ»ê¼öÇаú Á¶ÇÕ·ÐÀÇ ±âÃʸ¦ °øºÎÇÏ´Â °ÍÀ» 
            ÁÖµÈ ÇнÀ¸ñÇ¥·Î ÇÑ´Ù. 
              
               ÇнÀ ¸ñÇ¥ 
             
             Á¦ 7Â÷ ±³À°°úÁ¤¿¡¼ 
            »õ·Î µ¶¸³°ú¸ñÀ¸·Î ¿î¿µµÇ´Â ÀÌ»ê¼öÇÐ ±³°ú¿¡¼ ´Ù·ç´Â ´Ù¾çÇÑ ÀÌ·ÐÀ» 
            ÇнÀÇÏ°í  È¿À²Àû Áöµµ¹æ¹ý¿¡ °üÇÏ¿© ¿¬±¸ÇÏ´Â °ÍÀ» ÁÖµÈ ÇнÀ¸ñÇ¥·Î 
            ÇÑ´Ù. 
             ±¸Ã¼Àû ³»¿ë±³À°À» 
            »ìÆìº¸¸é, ¿©·¯ °¡Áö ¼¼±âÀÇ ¹æ¹ý, ÀÌÇ×Á¤¸®¿Í ´ÙÇ×Á¤¸®, Æ÷ÇÔ ¹èÁ¦ÀÇ 
            ¿ø¸®, Fibonacci ¼ö¿¿Í ±× ÀÀ¿ë¿¡ °üÇÑ ÀÌ·Ð, ¸ðÇÔ¼öÀÌ·Ð, ±×·¡ÇÁÀÌ·Ð, 
            ¾ÏÈ£ÀÌ·Ð µî ´Ù¾çÇÑ ÀÌ»ê¼öÇÐÀÇ ³»¿ëÀ» ÇнÀÇϰí ÀÌ»ê¼öÇÐ ±³À°°úÁ¤ 
            µîÀ» ¾Ë¾Æº»´Ù.  Æ¯È÷,  Çö´ë¼öÇÐÀÇ ¿©·¯ ºÐ¾ß¿¡¼ Áß¿äÇÑ 
            ÀÀ¿ëÀ» °®°í ÀÖ´Â ÀÌ»ê¼öÇÐÀÇ ´Ù¾çÇÑ ³»¿ëÀ» ÇнÀÇϰí È¿À²ÀûÀÎ Áöµµ¹æ¹ýÀ» 
            ޱ¸Çϴµ¥ ±³À°ÀÇ ÁßÁ¡À» µÐ´Ù. 
              
               ±³Àç ¹× 
            Âü°íµµ¼ 
               
               ´ÙÀ½¿¡ 
            Á¦½ÃµÈ ±³À縦 ÁÖ¿äÇÑ Âü°íµµ¼·Î »ç¿ëÇϱ⠹ٶó¸ç,   Æ¯º°È÷ 
            Á¤ÇØÁø ±³°ú¼´Â ¾ø½À´Ï´Ù.  ÀÌ»ê¼öÇР¶Ç´Â Á¶ÇÕ·Ð;  ¶Ç 
            ¿µ¹®À¸·Î´Â Discrete Mathematics ¶Ç´Â Combinatorial  Theory 
            µîÀÇ Á¦¸ñÀ» °¡Áø ¼ÀûÀ»Âü°íÇÏ¿© ÇнÀÇϱ⠹ٶø´Ï´Ù.    
               ¾Æ·¡¿¡ Á¦½ÃµÈ Âü°í¹®Çå 
            Áß¿¡¼  B. Kolman, R.C. Bussy & S. RossÀÇ Àú¼´Â ƯÈ÷ 9Àå 
            1-3Àý°ú 11Àå 1-2Àý °ÀÇ¿¡  Âü°íÇϱ⠹ٶø´Ï´Ù. 
              ¹ÚÁ¾¾È ¿Ü 2ÀÎ, ÀÌ»ê¼öÇÐ, °æ¹®»ç, 
            2006.  
              ±è¿ø±Ô, ÀÏÁ¤°½À °ÀÇ·Ï, ÃæºÏ´ë 
            ÁߵÀ°¿¬¼ö¿ø, 2005.  
              ÀÌ»ê¼öÇÐ ¹× ±³»ç¿ë Áöµµ¼ (±³À°ºÎ, 
            Á¦7Â÷ ±³À°°úÁ¤)    
              ÀüÁ¾¿ì.±è¿ìö,  È®·ü·Ð ÀÔ¹®, ¿µÁö¹®È»ç, 
            1986. 
              Àü¹®¼®, ÀÌ»ê¼öÇÐ,  È«¸ª°úÇÐÃâÆÇ»ç, 
            1992. 
              
              M.O. Albertson & J.P. Hutchinson,  Discrete 
            Mathematics with Algorithms,  Wiley, 1988. 
              R. Graham, D. Knuth & O. Patashnik,  Concrete 
            Mathematics,  Addison-Wesley, 1989. 
              B. Kolman, R.C. Bussy & S. Ross,  Discrete 
            Mathematical Structures, Prentice Hall, 1987. 
              N. L. Biggs,   Discrete  Mathematics, 
             Oxford Science Publications, 1989. 
              R.C. Bose & B. Manvel, Introduction to Combinatorail 
            Theory, John Wiley & Sons, 1984. 
              R. Brualdi,  Introductory 
            Combinatorics, North-Holland, 1977.  
              M. Hall, Combinatorial Theory, 
            Wiley Interscience, 1986.  
               R.M. Young, Excursions in Calculus, 
            MAA, 1992.  
               
               Course 
             Perspective  
            
             
                
                      
                         Interests 
                         in computer science and the use of computer applications, 
                        together with connections to many real-world situations, 
                        have helped make topics of discrete mathematics more 
                        commonplace  in  school and university curricula. 
                          A topic of widespread application and interest 
                        is combinatorics,  the study 
                        of counting techniques.  Enumeration, or counting, 
                        may strike one as an obvious process that a student 
                        learns when first studying arithmetic. But then, it 
                        seems, very little attention is paid to further developments 
                        in counting as the student turns to "more difficult" 
                        areas in mathematics, such as algebra, geometry, trigonometry, 
                        and calculus. . . . Enumeration [however] does not end 
                        with arithmetic. It also has applications in such areas 
                        as coding theory, probability, and statistics (in mathematics) 
                        and in the analysis of algorithms (in computer science). 
                        [Ralph P. Grimaldi, in Discrete and Combinatorial Mathematics, 
                        1994, p. 3]    
                          Combinatorial 
                        Analysis is an area of mathematics concerned with solving 
                        problems for which the number of possibilities is finite 
                        (though possibly quite large). These problems may be 
                        broken into three main categories: determining existence, 
                        counting, and optimization. Sometimes it is not clear 
                        whether a problem has a solution or not. This is a question 
                        of existence. In other cases solutions are known to 
                        exist, but we want to know how many there are. This 
                        is a counting problem. Or a solution may be desired 
                        that is "best" in some sense. This is an optimization 
                        problem. [John A. Dossey, Albert D. Otto, Lawrence E. 
                        Spence, & Charles V. Eynden, in Discrete Mathematics, 
                        1987, p. 1] 
                           Current 
                        documents that support the reform of school mathematics 
                        education suggest the need for increased attention to 
                        topics in discrete mathematics as well as in probability 
                        and statistics. The topic of combinatorics--counting--is 
                        mentioned in the National Council of Teachers of Mathematics 
                        standards documents and in the Mathematical Association 
                        of America's recommendations for teacher preparation 
                        as a topic area worthy of study by middle school and 
                        high school teachers. 
                           This 
                        quarter, we will study and apply combinatorial techniques 
                        in a variety of settings.  In doing so, we will 
                        make connections to algebra, probability, and many other 
                        topics in mathematics. During the course, we may also 
                        study the process of proof by induction, the use of 
                        recursion, and the graph theory and knot theory and 
                        more. 
                        
 
  | 
                 
              
              Contact Information  
            
            
 
                
                      
                        Room 82-105,  ÃæºÏ´ëÇб³ 
                        »ç¹ü´ëÇÐ   Wednesday  3:00-5:00 pm   E-mail: 
                        wkkim@chungbuk.ac.kr  FAX:  043-275-2715 
                           | 
                 
              
              Course Requirements and Grading 
            Scale  
            
 
                
                      
                        Problem Sets & 
                        Quizzes (20%)  These will be weekly assignments by 
                        webboard,  and several quizzes during the course. 
                            Test  (20%)  One exam will be given 
                        during the course.  The test is tentatively scheduled 
                        for the mid week of the Quarter.
  
                        Final Examination (60%) 
                        The test is scheduled 
                        for the last week of the Quarter.  | 
                 
              
              
               °ÀÇ ÀÏÁ¤ 
             
             |