Á¦ 9 Àå   ¿©·¯ °¡Áö DiscreteÇÑ ±¸Á¶µé       

       

      3. Order Relations

  

    3. Order Relations and structures

 

 

¹Ý¼ø¼­, Àü¼ø¼­, Á¤·ÄÁýÇÕÀÇ Á¤ÀǸ¦ ¼³¸íÇÏ°í, ±×

¿¹¸¦ µé¾î ¼³¸íÇÏ¿©º¸½Ã¿À.

 

 

 

 ¿©·¯ °¡Áö DiscreteÇÑ ±¸Á¶µé¿¡ °üÇÑ ¿©·¯ À̷еé

Áß¿¡¼­ Order Relations and Structures ¿¡ °üÇÏ¿©

ÇнÀÇÑ´Ù.

 

 

 

 

 

 

    Order Relations and structures

 

  ¿©·¯ °¡Áö DiscreteÇÑ ±¸Á¶µé¿¡ °üÇÑ ¿©·¯ À̷еé

Áß¿¡¼­ Order Relations and Structures ¿¡ °üÇÏ¿©

ÇнÀÇÑ´Ù.

±×¸®°í ¾Æ·¡ÀÇ °­ÀÇ ³»¿ëÀº B. Kolman, R.C. Bussy

& S. RossÀÇ Àú¼­ÀÎ

Discrete Mathematical Structures,

Prentice Hall Inc., 1996.

ÀÇ 7ÀåÀÇ ³»¿ëÀ» Âü°íÇÏ¿© ÇнÀÇϱ⠹ٶø´Ï´Ù.

  

(1) Partially Ordered Sets (Posets)

 

¡ßA Relation on a set A is called a partial order

if R is reflexive antisymmetric and transitive.

We denote this poset by (A,R)

¡ßThe poset (A,R-1) is dual of the poset (A,R)

¡ßIf (A,¡Â) is a poset, the elements a and b of

A are said to be comparable if a¡Âb or b¡Âa

¡ßIf every pair of elements in a poset A are

comparable, A is linearly ordered set and

partial order is called a linear order.

 

 

Theorem 1. If (A,¡Â) and (B,¡Â) are posets,  

then (A x B,¡Â) is a poset with partial order ¡Â

defined by (a,b) ¡Â(a',b')  if a¡Âa' in  A and

b¡Âb' in B.

 

 

 

¡ßThe partial order ¡Â defined on the Cartesian

Product A x B is called the Product partial

order.

¡ßDefine a partial order on A x B, denoted by <

as follows (a,b) ¡Â(a',b')  if a < a' or if  a = a'

and  b¡Âb' where but

This ordering is called lexicographic or

dictionary ordering

 

 

Theorem 2. The diagram of a partial order has

no cycle of length greater than 1.

 

 

 

¡ßHasse diagram

From the digraph of a partial order on A ,

Delete all the cycles of length 1.

Delete all the edges that are implied by transitive property.

Make all edges Point upward so that arrows

may be omitted.

Replace the circles by dots.

 

Topological sorting

If A  is a poset with partial order ¡Â, we can

find a linear order < such that if a¡Âb then

a<b.

Constructing such a linear order is called

topological sorting.

 

Isomorphism

Let (A,¡Â) and (A',¡Â') be posets and let f

:A¡æA' be a one-to-one correspondence

between A and A' . The function is called an

isomorphism from (A,¡Â) to (A',¡Â')

if for any a and b in A .a¡Âb if and only if

 f(a)¡Â'f(b)

 

 

 

Theorem 3. (Principle of Correspondence)

Let : be an isomorphism from (A,¡Â) to

(A',¡Â') and B¡ôA and B'¡ôf (B).

If the elements of B have any property relating

to one another or to other elements of A ,

and if this property can be defined entirely in

terms of the relation ¡Â, then the elements of

B' must possess exactly the same property,

defined in terms of ¡Â.

 

 

 

¡ßHasse diagram of (A,¡Â) becomes Hasse

diagram of (A',¡Â') if each label a is replace by

f (a).

 

 

 

¹®Á¦ 1.   Show that  if  R is a linear order on

the set A,  then  R-1 is also a linear order on

A.

 

 

 

(2) Extremal Elements of Partially     Ordered Sets

 

¡ßLet (A,¡Â) be a poset.

    - an element a¡ôA is called maximal

    element of  A if there is no element  c in A

    such that  a¡Âc

     

    - an element b¡ôA is called minimal

    element of A if there is no element c in A

    such that c¡Âb

 

 

 

Theorem 1. Let A be a finite nonempty poset

with partial order ¡Â. Then A has at least one

maximal element and at least one minimal

element .

 

 

 

¡ßLet (A,¡Â) be a poset

    - an element a¡ôA is called a greatest

    element of if x¡Âa for all a¡ôA

    - an element a¡ôA is called a least element

    of A if a¡Âx for all a¡ôA

     

 

 

Theorem 2. A poset has at most one greatest

element and at most one least element.

 

 

 

¡ßLet (A,¡Â) be a poset and B¡öA.

    - an element a¡ôA is called an upper

    bound of B if b¡Âa for all b¡ôB

    - an element a¡ôA is called an lower bound

    of B if a¡Âb for all b¡ôB

¡ßLet  A be a poset and B¡öA.

    - an element a¡ôA is called a least upper

    bound (LUB) of B if a is an upper bound of

    B and a¡Âa' whenever a' is and upper

    bound of B

    - similarly an element a¡ôA is called a

    greatest lower bound (GLB) of  B if a is a

    lower bound of B and a'¡Âa whenever a' is

    a lower bound of B

 

(3) Lattices

 

¡ßA lattice is a poset (L,¡Â)  in which every

subset {a,b} has a LUB and a GLU.

we denote LUB({a,b}) by and GLB({a,b}) by

a¡üb

 

 

 

Theorem 1. If (L1,¡Â) and (L2,¡Â') are lattices,

then (L,¡Â) is a lattice, where L = L1 x L2 , and

the partial order ¡Â of L is the product partial

order.

 

 

 

¡ßLet (L,¡Â) be a lattice. A nonempty subset S

of L is called a sublattice of L if a¡ýb¡ôS and

a¡üb¡ôS whenever a¡ôS,b¡ôS

¡ßIf f : L1 ¡æL2 is an isomorphism from the

poset (L1,¡Â1)  to the poset (L2,¡Â2) then L1 is

a lattice if and only if L2 is a lattice

If two lattices are isomorphic, they are

isomorphic lattices

¡ßA lattice L is said to be bounded if it has a

greatest element I and a least element O

 

 

 

Theorem 5. Let  L =

{a1 , a2 , ... , an } be a finite lattice Then L is

bounded.

 

 

¡ßA lattice L is called distributive if for any

elements a,b,c in   L

¡ßLet  L be a bounded lattice with greatest

element I  and least element O and let a¡ôL .

An element a'¡ôL is called a complement of  a

if a¡ýa'=I and a¡üa'= O

 

 

 

Theorem 7. Let be a bounded distributive

lattice. If a complement exists, it is unique.

 

 

¡ßA lattice L is called complemented if it is

bounded and if every element in L has a

complement.

 

 

 

¹®Á¦ 2.  Show that a subset of a linearly

ordered poset is a sublattice.

 

 

 

(4) Finite Boolean Algebras

 

 

 

Theorem 1. If S1={x1 , x2 , ... , xn} and

S2={y1 , y2 , ... , yn} are any two finite sets

with elements, then lattices (P(S1),¡ö) and

(P(S2),¡ö) are isomorphic.

 

 

Proof: for each subset A of , let  The

point is that the lattice (P(S),¡ö) is completely

determined as a poset by the number |S |.

 

¡ßIf the Hasse diagram of the lattice

corresponding to a set with n elements is

labeled by sequences of 0's and 1's of length

n, then the resulting lattice is named by Bn

     - If x = a1, a2 , ... , an and  y = b1, b2 , ...

    , bn are two elements of Bn

1. x¡Ây iff ak¡Âbk (as numbers 0 or 1)

    for k = 1,2,...,n

 

2. x¡ûy = c1, c2 ,...,cn where ck = min{ak ,bk }

 

3. x¡úy = d1, d2 ,...,dn wheredk = max{ak ,bk }

 

4. x has a complement x' =z1, z2 ,...,zn

   where zk = 1  if xk = 0 and zk = 0 if xk = 1

 

 

¡ßThe following figure shows the Hasse

diagrams of the lattices Bn for n=0,1,2,3

 

 

  

¡ßA finite lattice is called a Boolean algebra

  if it is isomorphic with Bn

 

 

 

Theorem 2. Let n = p1, p2, ... ,pn where the

pi  are distinct primes, then Dn  is a Boolean

algebra.

 

 

 

 

Theorem 3. (Substitution Rule for Boolean Algebra)

Any formula involving ¡ú,¡û or that holds for

arbitrary subset of a set S will continue to

hold for arbitrary elements of a Boolean

algebra L if

¡ü is substituted for ¡û,  and ¡ý for ¡ú.

 

 

 

 

Theorem 4. for any n¡Ã1, Bn is the product

BxBx...xB of B(B=B1 factors , where  

BxBx...xB is given the product partial order.

 

 

 

 

¹®Á¦ 3.  Are there any Boolean algebras having

three elements ?  Why or why not ?

 

 

 

 

 

 

 

   ¿©·¯ °¡Áö DiscreteÇÑ ±¸Á¶µé¿¡ °üÇÑ ¿©·¯ À̷еé

Áß¿¡¼­ Order Relations and Structures ¿¡ °üÇÏ¿©

ÇнÀÇÑ´Ù.

 

   

 

 

 

 

 

 

 

 

 

 

 

  Á¦ 9 Àå   ¿©·¯ °¡Áö DiscreteÇÑ ±¸Á¶µé       

       

      4. Iterated Functions : From Order to Chaos

 

    4. Iterated Functions : From Order to Chaos

 

 

 

 ÇÔ¼ö  f(x) = 1.6 x ( 1 - x ) °¡ ÀÖ´Ù.  ÀÌ ¶§,  

         xn+1 =  f ( xn) ÀÌ°í  xo= 1/2

À¸·Î Á¤ÀÇµÈ  { xn  }ÀÇ Ã³À½ 10¹ø° Ç×±îÁö ½áº¸°í,

±× ±ØÇÑ°ªÀº ¾ó¸¶Àΰ¡ ¾Ë¾Æº¸½Ã¿À.

 

 

 ÇÔ¼öÀÇ ¹Ýº¹½ÃÇàÀ¸·Î »ý±â´Â ¼ö¿­ÀÇ ±ØÇÑ°ú ±×¿¡

°ü·ÃµÈ ¼ºÁúÀ» ÇнÀÇÑ´Ù.

 

 

 

 Iterated Functions : From Order to Chaos

 

 I = [a, b] ÀÎ ½Ç¼öÀÇ Æ󱸰£ÀÌ°í    f : I ¡æ I ´Â

¿¬¼ÓÇÔ¼ö¶ó°í °¡Á¤ÇÏÀÚ.

ÀÌ ¶§, °¡Àå ´Ü¼øÇϸ鼭µµ ½É¿ÀÇÑ ÀÀ¿ëÀ» Æ÷ÇÔÇÏ´Â

¿¬»êÀº ÇÔ¼ö  f ¸¦ ¹Ýº¹ÇÏ¿© ½ÃÇàÇÏ´Â ÀÏÀÌ´Ù. ÀÌ¿Í

°°Àº °úÁ¤Àº ´ÙÀ½ ±×¸²¿¡¼­ º¼ ¼ö ÀÖµíÀÌ ´Ü¼øÇÑ

feed-back loopÀÇ ¸ð¾çÀ¸·Î ÀÌÇØÇÒ ¼ö ÀÖ´Ù. Áï, ÁÖ¾îÁø

input x¿¡ ´ëÇÏ¿© output y=f(x)°¡ ³ª¿À¸ç, ¶Ç y°¡ »õ·Î¿î

inputÀÇ ¿ªÇÒÀ» ÇÏ´Â ¹æ½ÄÀÌ´Ù.

         

 

À§¿Í °°Àº feedback mechanismÀ» dynamical systemÀ¸·Î

¾Ë·ÁÁ® ÀÖ´Â µ¿·ÂÇаèÀÇ ÇÑ ¿¹·Î ¼³¸íÇÒ ¼ö ÀÖ´Ù.

Iterative technique(¹Ýº¹±â¹ý)Àº ÀÚ¿¬°úÇÐÀÇ ¸ðµç

systemÀÇ ¹ßÀüÀÇ ¿¬±¸¿¡ ÇʼöÀûÀÎ ¹æ¹ýÀÌ´Ù.

 

 

Á¤ÀÇ.    ÀÓÀÇÀÇ x¿¡ ´ëÇÏ¿© ¹Ýº¹µÈ ¼ö¿­

           

À» xÀÇ orbitÀ̶ó°í ºÎ¸¥´Ù.

 

 

 

 

ÀÚ¿¬½º·´°Ô xÀÇ orbitÀº ¹«ÇÑÁýÇÕÀÏ °¡´É¼ºÀÌ Å©¸ç,

xÀÇ orbitÀÇ ±ØÇÑÀº ¾î¶»°Ô µÇ´Â°¡ ±Ã±ÝÇÏ´Ù. Áï,  ÇÔ¼ö

f°¡ ÁÖ±âÇÔ¼öÀûÀÎ ¼ºÁúÀ» °¡Áö´ÂÁö (¾î¶² ÀÚ¿¬¼ö n¿¡

´ëÇÏ¿©   fn(x) = x)  ¶Ç´Â xÀÇ orbitÀÌ ±¸°£ IÀÇ

Á¶¹Ð(dense)ÇÑ ºÎºÐÁýÇÕÀÌ µÇ´ÂÁö µîÀÌ ±Ã±ÝÇÏÁö¸¸

ÀϹÝÀûÀ¸·Î ±× ¼ºÁúÀ» ±Ô¸íÇÏ´Â °ÍÀº ¸Å¿ì ¾î·Æ´Ù.

 

 

 

¿¹Á¦ 1. ÇÔ¼ö  f : [0,1] ¡æ [0,1] ÀÌ ´ÙÀ½°ú °°ÀÌ

ÁÖ¾îÁ³´Ù.

 

 

 

Ç®ÀÌ.

L51-0005_img_9_03_05.jpg

...

µû¶ó¼­  f1998(x) = f3x666(x) = x

À̹ǷΠ f1998(x) = 1998

 

 ÀÌÁ¦ ´Ü¼øÇÑ 1Â÷¿ø dynamical systemÀ»

¾Ë¾Æº¾½Ã´Ù.

¸ÕÀú I=[0,¡Ä) ÀÌ°í ¸ðµç x¡ô I ¿¡ ´ëÇÏ¿©  ¶ó°í

µÎÀÚ. ¿¬¼ÓÇÔ¼ö f¸¦ »ç¿ëÇÏ¿© ¼ö¿­ (xn)À»

xn+1= f(xn)    nÀº ÀÚ¿¬¼ö

¿Í °°ÀÌ Á¤ÀÇÇÏÀÚ.

 

 

ÀÌ¿Í °°Àº ¹Ýº¹ ¿¬»êÀº ½ÇÇÔ¼ö  f  : R ¡æ R ¿¡¼­ÀÇ

°æ¿ì¿Í´Â ´Þ¸® º¹¼ÒÇÔ¼ö   f  : C ¡æ C  ÀÎ °æ¿ì orbitÀÇ

º¹ÀâÇÏ°í ¿¹ÃøºÒ°¡´ÉÇÑ »óȲÀ» ¿¬ÃâÇϸç, ÃʱⰪ¿¡

µû¶ó¼­ orbitÀÇ ¸ð¾çÀº ¾öû³ª°Ô ´Þ¶óÁú ¼ö ÀÖÀ¸¹Ç·Î

ÃʱⰪÀÇ ¹Î°¨¼ºÀ̶ó´Â ¿ë¾î¸¦ ¿Ï¼ºÇÏ¿´´Ù.

ÀÌ¿Í °ü·ÃÇÏ¿© Benoit Mandelbrot´Â fractal geometry

¶ó´Â ºÐ¾ßÀÇ ¼±±¸ÀÚÀûÀÎ ÇÐÀÚÀ̸ç ÀÌ¿¡ °ü·ÃÇÏ¿© ´ÙÀ½À»

clickÇÏ¿©  ¿©·¯ ÀÚ·áµéÀ» Âü°íÇϱ⠹ٶø´Ï´Ù.

 

 

 

 ¹®Á¦ 1.    ÇÔ¼ö  f(x) = 2x ( 1 - x ) °¡ ÀÖ´Ù.  ÀÌ ¶§,  

       xn+1 =  f ( xn) ÀÌ°í  xo= 1/3

À¸·Î Á¤ÀÇµÈ  { xn  }ÀÇ Ã³À½ 10¹ø° Ç×±îÁö ½áº¸°í, ±× ±ØÇÑ°ªÀº ¾ó¸¶Àΰ¡ ±¸ÇϽÿÀ.

 

 

 

 

 

 ÇÔ¼öÀÇ ¹Ýº¹½ÃÇàÀ¸·Î »ý±â´Â ¼ö¿­ÀÇ ±ØÇÑ°ú ±×¿¡

°ü·ÃµÈ ¼ºÁúÀ» ÇнÀÇÑ´Ù.