Á¦ 8 Àå    Graph À̷аú ±× ÀÀ¿ë

 

      3. Regular and Bipartite Graph

  

    3. Regular and Bipartite Graph

 

 

  ¸ðµç Á¤Á¡¿¡¼­ ¸ð¼­¸®ÀÇ °³¼ö°¡ °°Àº  ¿©·¯ °¡Áö

±×·¡ÇÁµéÀ» ±×·Á º¸½Ã¿À.

 

 

 

 

   ¾Õ¿¡¼­ ÇнÀÇÑ ±×·¡ÇÁÀÇ °³³ä°ú Á¤ÀÇ¿¡ À̾

ÇÊ¿äÇÑ ¿©·¯ °³³äÀ» °è¼ÓÇÏ¿© ÇнÀÇÑ´Ù.

 

 

 

 

   Regular and Bipartite Graph

 

 ¾Õ¿¡¼­ ÇнÀÇÑ ±×·¡ÇÁÀÇ °³³ä°ú Á¤ÀÇ¿¡ À̾ ÇÊ¿äÇÑ ¿©·¯ °³³äÀ» °è¼ÓÇÏ¿© ÇнÀÇϱâ·Î ÇÑ´Ù.

  ´ÙÀ½ÀÇ °­ÀÇ ³»¿ëÀº ¾Õ¿¡¼­¿Í °°ÀÌ ±×·¡ÇÁÀ̷п¡ ´ëÇÑ Ç¥ÁØÀûÀÎ ±³ÀçµéÀ» Âü°íÇÏ¿© ÇнÀÇϱ⠹ٶø´Ï´Ù.

 

¸ÕÀú ´ÙÀ½ÀÇ Á¤ÀǸ¦ »ý°¢ÇØ º¾½Ã´Ù.

 

 

Á¤ÀÇ 1.  V´Â n°³ÀÇ Á¤Á¡À» °®´Â ÁýÇÕÀÌ¶ó °¡Á¤ÇÒ ¶§, V ¸¦ Á¤Á¡À¸·Î ÇÏ´Â ¿ÏÀü±×·¡ÇÁ (complete graph)¶õ  ÀÓÀÇÀÇ a¡ÁbÀÎ a,b¡ôV ¿¡ ´ëÇÏ¿© ¸ð¼­¸® (a,b)°¡ ¹Ýµå½Ã Á¸ÀçÇÏ´Â ·çÇÁ°¡ ¾ø´Â ±×·¡ÇÁ¸¦ ÀǹÌÇϸç,  KnÀ̶ó°í ³ªÅ¸³½´Ù.

 

 

 

 

¿¹Á¦ 1.  n°³ÀÇ Á¤Á¡À» °®´Â ¿ÏÀü ±×·¡ÇÁ´Â KnÀ¸·Î Ç¥½ÃÇϸç,  KnÀº n(n-1)/2°³ÀÇ ¸ð¼­¸®¸¦ °®´Â´Ù. ½ÇÁ¦·Î Á¶ÇÕÀÇ ¼ö¸¦ ÀÌ¿ëÇÏ¿© ±¸ÇÒ ¼ö ÀÖ´Ù.¾Æ·¡ÀÇ ±×¸²Àº  n=2,3,5,8ÀÎ °æ¿ìÀÇ  ¿ÏÀü±×·¡ÇÁ KnÀ» ³ªÅ¸³½´Ù.

 

  

±×¸² 1

 

 

   ±×·¡ÇÁ G´Â n°³ÀÇ Á¤Á¡À» °®´Â ·çÇÁ°¡ ¾ø´Â ±×·¡ÇÁ¶ó°í ÇÏÀÚ.  ±×·¡ÇÁ GÀÇ  complementÀÎ ±×·¡ÇÁ´Â ±×·¡ÇÁ G¿¡ ¼ÓÇÏÁö ¾Ê´Â ¸ðµç ¸ð¼­¸®µé°ú Á¤Á¡µé·Î ±¸¼ºµÈ ¿ÏÀü±×·¡ÇÁ KnÀÇ  ºÎºÐ±×·¡ÇÁ¸¦ ÀǹÌÇÑ´Ù.

 The degree (Â÷¼ö) of a vertex in a graph is the number of edges that touch it. The number on each vertex of this graph is the degree of that vertex.

´ÙÀ½ ±×·¡ÇÁ¿¡¼­ Á¤Á¡¿¡ Ç¥½ÃµÈ ¼ö´Â °¢ Á¤Á¡ÀÇ degree(Â÷¼ö)¸¦ ³ªÅ¸³½´Ù.

                          ±×¸² 2

 

 

´ÙÀ½Àº graphÀÌ·ÐÀÇ ¿©·¯ ±×·¡ÇÁ Áß¿¡¼­ °¡Àå ÀÌ»óÀûÀÎ ±×·¡ÇÁ¸¦ ³ªÅ¸ ³½´Ù.

 

 

Á¤ÀÇ 2.  ±×·¡ÇÁG = (V, E)ÀÇ ¸ðµç Á¤Á¡ÀÇ  Â÷¼ö(degree)°¡ °°´Ù¸é , ±× ±×·¡ÇÁ¸¦ Á¤±Ô ±×·¡ÇÁ (regular graph)¶ó°í ÇÑ´Ù.

 

 

 

¾Æ·¡ÀÇ ±×¸²Àº  n=2,3,6 ÀÎ °æ¿ìÀÇ  Á¤±Ô±×·¡ÇÁ¸¦ ³ªÅ¸³½´Ù.

 

                  ±×¸² 3

 

   

 

Á¤ÀÇ 3.  ±×·¡ÇÁ G = (V, E)°¡  V=V1¡ú V2 °ú V1¡ûV2= ¬¶ÀÎ µÎ °³ÀÇ ÁýÇÕ V1°ú V2·Î ºÐÇÒµÈ ±×·¡ÇÁ¶ó°í ÇÏ°í,  ºÐÇÒµÈ  ÁýÇÕ V1¿Í V2 ÀÇ °¢ Á¤Á¡À» °®´Â ¸ð¼­¸®°¡ Á¸ÀçÇÑ´Ù¸é, ÀÌ ±×·¡ÇÁ G¸¦ À̺б׷¡ÇÁ(bipartite graph)¶ó°í ÇÑ´Ù. ¶Ç, V1°ú V2¿¡ Á¸ÀçÇÏ´Â °¢ ¸ðµç Á¤Á¡µé »çÀÌ¿¡ ¸ð¼­¸®µéÀÌ ¸ðµÎ Á¸ÀçÇÒ °æ¿ì, ±×·¡ÇÁ G¸¦ ¿ÏÀüÀ̺б׷¡ÇÁ (complete bipartite graph)¶ó°í ÇÑ´Ù.

 

 

 

   

 

¿¹Á¦ 2. V1ÀÇ Á¤Á¡ÀÇ °³¼ö¸¦ m, V2ÀÇ Á¤Á¡ÀÇ °³¼ö¸¦ nÀÌ¶ó °¡Á¤ÇÒ °æ¿ì, ¿ÏÀü À̺б׷¡ÇÁ¸¦ Km,nÀ¸·Î ³ªÅ¸³½´Ù.

 

  ±×¸² 4.

 

 

 

 

¿¹Á¦ 3.  ´ÙÀ½ ±×¸² 5ÀÇ ±×·¡ÇÁµéó·³ ¸ðµç Á¤Á¡ÀÇ  Â÷¼ö°¡ ¸ðµÎ kÀÎ ±×·¡ÇÁ¸¦ k-Á¤±Ô±×·¡ÇÁ¶ó°í ÇÑ´Ù. n°³ÀÇ Á¤Á¡À» °®´Â ¿ÏÀü±×·¡ÇÁ KnÀº  ºÐ¸íÈ÷ (n-1) -Á¤±Ô±×·¡ÇÁÀÌ´Ù.

 

                                                                       ±×¸² 5.

 

  

 

In a graph, the neighbors of a vertex are all the vertices which are connected to that vertex by a single edge. A dominating set for a graph is a set of vertices whose neighbors, along with themselves, constitute all the vertices in the graph.

(The Ice Cream Stands Problem is an example of a dominating set problem.

                           ±×¸² 6

 

 

Isomorphic Graphs (µ¿ÇüÀÎ ±×·¡ÇÁ)

 

griso.gif


Two graphs are isomorphic if you can re-draw one of them so that it looks exactly like the other.

The edges of a graph can be stretched, shrunk, pulled out of place, or deformed in any imaginable way and it will still be the same graph. All of the different representations of the same graph, are said to be isomorphic to one another.

 

                 griso2.gif

 

To re-draw a graph, it helps to imagine the edges as infinitely stretchable rubber bands. You can move the vertices around and stretch the edges any way you like -- as long as they don't become disconnected.

Sometimes it is very hard to tell whether two graphs are isomorphic or not. In fact, no one knows a simple method for taking two graphs and determining quickly whether or not they are isomorphic.

 

  

 ¾Õ¿¡¼­ ÇнÀÇÑ ±×·¡ÇÁÀÇ °³³ä°ú Á¤ÀÇ¿¡ À̾

ÇÊ¿äÇÑ ¿©·¯ °³³äÀ» °è¼ÓÇÏ¿© ÇнÀÇÑ´Ù.

 

    

 

 

 

 

 

 

 

 

 

 

 

  

  Á¦ 8 Àå    Graph À̷аú ±× ÀÀ¿ë

 

  4.  Eulerian Graph and Hamiltonian Graph

  

    4.  Eulerian Graph and Hamiltonian Graph

 

 

  ´ÙÀ½ ±×·¡ÇÁ¿¡¼­ Á¡ A¿¡¼­ ½ÃÀÛÇÏ¿© ¸ðµç ¸ð¼­¸®¸¦

Áö³ª¼­ Á¡ A·Î µ¹¾Æ¿Ã ¼ö ÀÖ´Â °æ·Î¸¦ ±×¸± ¼ö Àִ°¡

»ý°¢ÇÏ¿© º¸½Ã¿À. 

           

 

 

  º» °­ÀÇ¿¡¼­ÀÇ   Eulerian Graph¿Í Hamiltonian

Graph¿¡ °üÇÏ¿© ÇнÀÇÑ´Ù.

 

 

 Eulerian Graph and Hamiltonian Graph

  

±×·¡ÇÁÀÌ·Ð Áß¿¡¼­ °¡Àå Áß¿äÇÑ ¹®Á¦´Â ÁÖ¾îÁø±×·¡ÇÁ

¿¡¼­ ¾î¶² ¿øÇÏ´Â Çà·Î³ª cycle µîÀ» ã´Â ¹æ¹ýÀÌ´Ù.

¿ì¸®´Â ÀÌ°ÍÀ» ÇнÀÇϱâ Àü¿¡  ±âº»ÀûÀÎ ±×·¡ÇÁ ¿ë¾î¸¦ ´Ù½Ã ¾Ë¾Æº¸µµ·Ï ÇսôÙ.

 

 

Á¤ÀÇ 1.  ¹«¹æÇâ ±×·¡ÇÁ G¿¡¼­ ÇÑ Á¤Á¡ vÀÇ Â÷¼ö (degree)´Â Á¤Á¡ v¿¡ ¿¬°áµÇ´Â ¸ð¼­¸®ÀÇ °³¼öÀÌ´Ù.

Á¤Á¡ vÀÇ Â÷¼ö¸¦ deg(v)·Î Ç¥½ÃÇϸç, deg(v)´Â Á¤Á¡ v¿¡ ¿¬°áµÈ ¸ð¼­¸®ÀÇ ¼öÀÌ´Ù.

 

 

  ´ÙÀ½ ±×·¡ÇÁ¿¡¼­ Á¤Á¡¿¡ Ç¥½ÃµÈ ¼ö´Â °¢ Á¤Á¡ÀÇ degree(Â÷¼ö)¸¦ ³ªÅ¸³½´Ù.

                  

 

 

Á¤ÀÇ 2.  ´Ü¼ø ¹æÇâ ±×·¡ÇÁ G =< V , E >¿¡¼­ ÇÑ Á¤Á¡¿¡ ´ëÇÏ¿© Á¤Á¡ v¸¦ Ãâ¹ßÁ¡À¸·Î °®´Â ¸ð¼­¸®ÀÇ ¼ö¸¦ vÀÇ ¿ÜºÎ Â÷¼ö(outdegree)¶ó°í Çϸç, v¸¦ µµÂøÁ¡À¸·Î °®´Â ¸ð¼­¸®ÀÇ ¼ö¸¦ vÀÇ ³»ºÎ Â÷¼ö( indegree) ¶ó°í ¸»ÇÑ´Ù. ³»ºÎ¿Í ¿ÜºÎ Â÷¼öÀÇ ÇÕÀ» ÃÑ Â÷¼ö (total degree) ¶ó°í ¸»ÇÑ´Ù.

 

 

 

 

¹®Á¦ 1.  ´ÙÀ½ ±×¸²¿¡¼­ °¢ Á¤Á¡ÀÇ degree¸¦ ±¸ÇϽÿÀ.

         

 

 

ÀÌÁ¦  ¸ðµç vertex v¿¡ ´ëÇÑ deg(v)ÀÇ ÇÕÀ» ±¸ÇÏ¿© º¾½Ã´Ù.

ÀÓÀÇÀÇ ¹«¹æÇâ ±×·¡ÇÁ G¿¡¼­  ÀÓÀÇÀÇ ¸ð¼­¸®(a,b)¿¡ ´ëÇÏ¿©,

°¢°¢ÀÇ deg(a)¿Í deg(b)ÀÇ ¼ö´Â Áߺ¹ÇÏ¿© ´õÇÏ°Ô µÈ´Ù.

°á±¹ G =( V , E )°¡ ¹«¹æÇâ ±×·¡ÇÁ¶ó¸é  

¸ðµç vertex v¿¡ ´ëÇÑ deg(v)ÀÇ ÇÕÀº

¿Í °°ÀÌ Àüü ¸ð¼­¸®ÀÇ ¼ö¿¡  2 ¹è¿Í °°´Ù.   

 

Á¤¸® 1.     G =( V , E )°¡ ¹«¹æÇâ ±×·¡ÇÁÀÏ ¶§, 

¸ðµç vertex v¿¡ ´ëÇÑ deg(v)ÀÇ ÇÕÀº

       

ÀÌ´Ù.

 

 

 

 

¹®Á¦ 2.   ÀÓÀÇÀÇ ¹«¹æÇâ ±×·¡ÇÁ¿¡ ´ëÇØ, Ȧ¼ö Â÷¼ö¸¦

°®´Â Á¤Á¡ÀÇ ¼ö´Â ¦¼öÀÓÀ» Áõ¸íÇϽÿÀ.

 

 

 

 

°¢ Á¤Á¡ÀÌ °°Àº Â÷¼ö¸¦ °®´Â ¹«¹æÇâ ±×·¡ÇÁ¸¦

Á¤±Ô(regular)±×·¡ÇÁ¶ó°í ÇÏ¿´´Ù.

 

ÀÌ ¶§, Á¤¸® 1ÀÇ ÀÀ¿ëÀ¸·Î ¿ì¸®´Â ´ÙÀ½°ú °°Àº ¹®Á¦¸¦ »ý°¢ÇÏ¿© º¾½Ã´Ù.

 

¸ðµç Á¤Á¡ÀÌ Â÷¼ö 4¸¦ °®°í  Àüü 10°³ÀÇ ¸ð¼­¸®¸¦ °®´Â Á¤±Ô±×·¡ÇÁ°¡ Á¸ÀçÇÒ ¼ö Àִ°¡ ?

 

¿ì¸®´Â À̸¦ ÇØ°áÇÏ´Â µµ±¸·Î Á¤¸® 1À» »ç¿ëÇÒ ¼ö ÀÖ´Ù.

Áï,  2£üE£ü= 20 = 4£üV£üÀ̾î¾ß ÇϹǷΠÂ÷¼ö 4ÀΠ5°³ÀÇ Á¤Á¡À» °®´Â ±×·¡ÇÁ°¡ Á¸ÀçÇÑ´Ù.  

´ÙÀ½ ±×¸²Àº À§ Á¶°ÇÀ» ¸¸Á·ÇÏ´Â  2 °³ÀÇ ºñµ¿Çü ±×·¡ÇÁÀÌ´Ù.

 

 

 

¹®Á¦ 3.  ¸ðµç Á¤Á¡ÀÇ Â÷¼ö°¡  3ÀÎ  20°³ÀÇ ¸ð¼­¸®¸¦

°®´Â regular ±×·¡ÇÁ´Â Á¸ÀçÇϴ°¡ ¾Ë¾Æº¸½Ã¿À.

 

 

 

 

ÀÌÁ¦  EulerÀÇ  KonigsbergÀÇ ´Ù¸®¹®Á¦¸¦ ÇØ°áÇϱâ

À§ÇÏ¿© °¢ Á¤Á¡¿¡¼­ÀÇ Â÷¼ö¸¦ »ç¿ëÇÏ¿© º¾½Ã´Ù.

 

¾Õ Àý¿¡¼­ ÇнÀÇÏ¿´µíÀÌ, Konigsberg µµ½Ã´Â Pregel°­¿¡ ÀÇÇÏ¿© 4°³ÀÇ ±¸¿ªÀ¸·Î ³ª´©¾îÁ³´Ù.

 ´ÙÀ½ ±×¸²Ã³·³ ,ÀÌ Áö¿ªÀº 7°³ÀÇ ´Ù¸®·Î ¿¬°áµÇ¾îÀÖ¾ú°í ÁֹεéÀº ¾î´À Á¡À» ½ÃÀÛÇÏ¿© »êÃ¥Çϸé ÇÑ ¹ø Áö³ª°£ ´Ù¸®´Â ´Ù½Ã °ÅÄ¡Áö ¾Ê°í 7°³ÀÇ ´Ù¸®¸¦ ÀüºÎ »êÃ¥ÇÒ ¼ö Àִ°¡¸¦  Ç×»ó ±Ã±ÝÇÏ°Ô »ý°¢ÇÏ¿´´Ù°í ÇÑ´Ù.

ÀÌ ¶§ Euler¶ó´Â ´ë¼öÇÐÀÚ°¡ Á¤Á¡ÀÇ Â÷¼ö¸¦ ÀÌ¿ëÇÏ¿© ÇØ°áÇÒ ¼ö ÀÖ¾úÀ¸¸ç, ÀÌ°ÍÀÌ °ð ±×·¡ÇÁÀÌ·Ð (graph theory) ÀÇ ½ÃÀÛÀ̾ú´ø °ÍÀº ¾Õ¿¡¼­ ¸»Çѹ٠ÀÖ´Ù.

ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇÏ¿©, Euler´Â ±×¸² 2ó·³ ±×·¡ÇÁÀÇ Á¤Á¡°ú °£¼±À» ÀÌ¿ëÇÏ¿© °£´ÜÇÏ°Ô Ç¥ÇöÇÏ¿´°í. ¿©±â¼­ °¢°¢ÀÇ Á¤Á¡ÀÇ Â÷¼ö´Â

   deg(1) = deg(2) = deg(3) = 3,  deg(5) = 5.

 ±×¸² 1

±×¸² 2

À§ ±×¸²¿¡¼­   1°ú 2´Â °­ÀÇ ¾çÂÊ ±â½¾À» ÀǹÌÇϸç, 3°ú 4´Â 2°³ÀÇ ¼¶À» ³ªÅ¸³½´Ù. ÀÌ Á¡µéÀ» ¿¬°áÇÏ´Â 7°³ÀÇ ¼±µéÀº 7°³ÀÇ ´Ù¸®¸¦ ³ªÅ¸³½´Ù.

 

À§ ¹®Á¦ÀÇ ÇØ°áÀº ±×·¡ÇÁ¿¡¼­ Ȧ¼ö Â÷¼öÀÇ Á¤Á¡ÀÇ ¼ö¿¡

´Þ·ÁÀÖ´Ù´Â °ÍÀ» Euler´Â ¹ß°ßÇß´Ù.

 

 

 

Á¤ÀÇ 3.   G =( V , E )¸¦ ¹«¹æÇâ ±×·¡ÇÁ¶ó°í ÇÏÀÚ.

¸¸ÀÏ °¢°¢ÀÇ ¸ð¼­¸®¸¦ Á¤È®ÇÏ°Ô ÇÑ ¹ø¾¿ °æÀ¯Çؼ­

±×·¡ÇÁÀÇ ¸ðµç ¸ð¼­¸®¸¦ Áö³¯ ¼ö ÀÖ´Â °æ·Î°¡

Á¸ÀçÇÑ´Ù¸ç, ±×·¡ÇÁ G ´Â Euler°æ·Î (Euler path)¸¦

°®´Â´Ù°í ÇÑ´Ù.  ¶Ç,  Euler circuit À̶õ Euler

°æ·Î·Î¼­ circuitÀÎ °ÍÀ» ÀǹÌÇÑ´Ù.

 

 

ÀÌÁ¦ GraphÀÌ·ÐÀÇ °¡Àå Áß¿äÇÑ Á¤¸®¸¦ ÇнÀÇϵµ·Ï ÇսôÙ

 

 

Á¤¸® 2.  G =( V , E )¸¦ ¹«¹æÇâ ±×·¡ÇÁ¶ó°í ÇÏÀÚ.

ÀÌ ¶§  ±×·¡ÇÁ G°¡ Euler °æ·Î¸¦ °®±â À§ÇÑ ÇÊ¿äÃæºÐ

Á¶°ÇÀº  ±×·¡ÇÁ G°¡ ¿¬°áµÈ ±×·¡ÇÁÀ̸ç, ¸ðµç Á¤Á¡ÀÇ

Â÷¼ö(degree)°¡ ¦¼öÀÎ °ÍÀÌ´Ù.

 

 

Áõ¸í.  À§ Á¤¸®ÀÇ Áõ¸íÀº ±×·¡ÇÁÀ̷п¡ ´ëÇÑ Ç¥ÁØÀûÀÎ

±³ÀçµéÀ» Âü°íÇÏ¿© ÇнÀÇϱ⠹ٶø´Ï´Ù.

  

 

 

Á¤¸® 3.  G =( V , E )¸¦ ¹«¹æÇâ ±×·¡ÇÁ¶ó°í ÇÏÀÚ.

 (1) If a graph  G has more than two vertices of

odd degree, then there can be no Euler path in G.

 (2)  If  G  is connected and has exactly two vertices of odd degree, there is an Euler Path

in G.

  Any Euler path in G must begin at on vertex of odd degree and end at the other.

 

 

 

¹®Á¦ 4.  ´ÙÀ½ ±×·¡ÇÁ¿¡¼­ Euler Path¸¦ ã¾Æ º¸½Ã¿À.

(1)

                

 

  (2)

 

(3)     

           

 

 

 

  Euler°æ·Î´Â ÁÖ¾îÁø ±×·¡ÇÁ¿¡¼­ ¸ð¼­¸®¿¡ °üÇÑ °æ·Î¸¦ ¹ß°ßÇÏ¿´Áö¸¸ , Euler´Â ¸ðµç Á¤Á¡À» °æÀ¯ÇÏ´Â °æ·Î¿¡ ´ëÇÏ¿© ´Ù·çÁö ¾Ê¾Ò´Ù.

¿©±â¼­ ¿ì¸®´Â ¿¬°áµÈ ±×·¡ÇÁ°¡ °¢ Á¤Á¡À» Á¤È®È÷ Çѹø¸¸ °æÀ¯ÇÏ´Â °æ·Î¸¦ °®°í ÀÖ´ÂÁö¸¦ »ý°¢ÇÏ¿©º¾½Ã´Ù.

ÀÌ¿Í °°Àº ¹®Á¦´Â,  salesmanÀÇ ¿©Çà µî°ú °°ÀÌ °æÁ¦ÀûÀ¸·Î ÀǹÌÀÖ´Â ÀÀ¿ë¹®Á¦ÀÌ´Ù.

Áï, Á¤Á¡µéÀº ¹æ¹®ÇÒ µµ½ÃµéÀ» ³ªÅ¸³ÂÀ¸¸ç, ÀÌ °ÔÀÓÀÇ ¸ñÀûÀ¸·Î´Â °¢ µµ½Ã¸¦ Á¤È®È÷ ÇÑ ¹ø¸¸ °æÀ¯ÇÏ´Â ÃÖÀûÀÇ sales ¿©Çà°æ·ÎÀ» ¹ß°ßÇÒ ¼ö Àִ°¡ÇÏ´Â ¹®Á¦ÀÌ´Ù.

 

¿¬°áµÈ ±×·¡ÇÁ°¡ °¢ Á¤Á¡À» Á¤È®È÷ Çѹø¸¸ °æÀ¯ÇÏ´Â °æ·ÎÀÎ ÇÑ circle(¼øȯ)À»  ¾ÆÀÏ·£µåÀÇ ¼öÇÐÀÚ Hamilton (Sir William Rowan Hamilton, 1805 - 1865)ÀÇ À̸§À» µû¼­ Hamilton ¼øȯ (Hamiltonian cycle) À̶ó°í ºÎ¸£¸ç, Hamiltion ¼øȯÀ» °®´Â ¸ðµç ±×·¡ÇÁ¸¦ Hamilton ±×·¡ÇÁ(Hamiltonian graph)¶ó°í ÇÑ´Ù.

 

 

Áï,  ±×·¡ÇÁ G =( V , E )°¡ ÁÖ¾îÁø ¸ðµç Á¤Á¡µéÀ» Á¤È®ÇÏ°Ô Çѹø¸¸ °æÀ¯Çؼ­ ÇϳªÀÇ °æ·Î°¡ ÀÖ´Â ±×·¡ÇÁ¸¦ ¿ì¸®´Â Hamilton°æ·Î°¡ Á¸ÀçÇÑ´Ù°í ÇÑ´Ù°í ÇÑ´Ù.

´õ¿íÀÌ ±×·¡ÇÁ¿¡¼­ ¸ðµç Á¤Á¡µéÀ» Æ÷ÇÔÇÏ´Â »çÀÌŬÀ» ¿ì¸®´Â Hamilton »çÀÌŬÀ̶ó°í Çϸç, ÇÑ ¸ð¼­¸®¸¦ Á¦¿ÜÇÑ °æ·Î¸¦ ¿ì¸®´Â Hamilton °æ·Î¶ó°í ÇÑ´Ù.

ÁÖ¾îÁø ±×·¡ÇÁ G =( V , E )¿¡¼­ , Hamilton°æ·Î°¡ Àִ°¡¸¦ È®ÀÎÇÏ·Á¸é ´ÙÀ½À» °ËÅäÇÏ¿©¾ß ÇÑ´Ù.

1. ¸¸ÀÏ ±×·¡ÇÁ G°¡ Hamiltion °æ·Î¸¦ °®´Â´Ù¸é, V¿¡ ¼ÓÇÑ ¸ðµç Á¤Á¡µéÀÇ Â÷¼ö´Â 2º¸´Ù Å©´Ù. Áï deg(v) ¡Ã2.

2.¸¸ÀÏ V¿¡ ¼ÓÇÏ´Â Á¤Á¡ a¿¡ ´ëÇØ deg(a) =2 À̸é, Á¤Á¡ a¿¡ ¿¬°üµÈ µÎ °³ÀÇ ¸ð¼­¸®µéÀº ´ç¿¬È÷ ±×·¡ÇÁ G¿¡ ´ëÇÑ Hamilton°æ·Î¿¡ ¼ÓÇÏ´Â ¸ð¼­¸®ÀÌ´Ù.

3. ¸¸ÀÏ V¿¡ ¼ÓÇÏ´Â Á¤Á¡ a¿¡ ´ëÇØ deg(a) = 2 À̸é, Á¤Á¡ a¿¡ ¿¬°üµÈ µÎ °³ÀÇ ¸ð¼­¸®´Â ±×·¡ÇÁ GÀÇ Hamilton °æ·Î¿¡ ¼ÓÇÏ´Â °£¼±¿¡¼­ Á¦¿ÜµÈ´Ù.

4. ±×·¡ÇÁ G¿¡¼­ Hamilton °æ·Î¸¦ ã´Â °úÁ¤¿¡¼­ , ±×·¡ÇÁÀÇ ¸ðµç Á¤Á¡µéÀ» Æ÷ÇÔÇÏÁö ¾Ê´Â ºÎºÐ ±×·¡ÇÁ¿¡¼­ °æ·Î¸¦ ¾òÀ» ¼ö ¾ø´Ù.

 

 

¹®Á¦ 5.  ´ÙÀ½ ±×·¡ÇÁ¿¡¼­ Hamilton °æ·Î¸¦ ã¾Æ º¸½Ã¿À.  

(1)

      

 (2)

     

 

 

 

 

       

ÀÌÁ¦ ³¡À¸·Î, ¿ì¸®´Â ´õ¿í ÀϹßÈ­µÈ Á¤¸®·Î ´ÙÀ½À» ¼Ò°³ÇÑ´Ù.

 

 

Á¤¸® 4.  ¸¸¾à G =( V , E )°¡ n¡Ã3ÀÎ Á¤Á¡À» °®´Â

´Ü¼ø ±×·¡ÇÁ¶ó°í ÇÒ ¶§,  ¼­·Î ÀÎÁ¢ÇÏÁö ¾Ê´Â µÎ Á¤Á¡

u¿Í v»çÀÌ¿¡ ½Ä

    deg(u) + deg(v) ¡Ã n

ÀÌ ¼º¸³Çϸé,  ±×·¡ÇÁ G´Â Hamilton °æ·Î¸¦ °®´Â´Ù.

 

 

Áõ¸í.  À§ Á¤¸®ÀÇ Áõ¸íÀº ±×·¡ÇÁÀ̷п¡ ´ëÇÑ Ç¥ÁØÀûÀÎ

±³ÀçµéÀ» Âü°íÇÏ¿© ÇнÀÇϱ⠹ٶø´Ï´Ù.

 

 

µû¸§Á¤¸®.  G  has a Hamiltonian circuit if each vertex

has degree greater than or equal to  n/2.

 

 

 

 

Á¤¸® 5.  ±×·¡ÇÁ G =( V , E )°¡ n¡Ã3ÀÎ Á¤Á¡À» °®´Â ´Ü¼ø ±×·¡ÇÁ¶ó°í ÇÒ ¶§,  ¸ðµç Á¤Á¡ v¿¡ ´ëÇØ ´ÙÀ½ ºÎµî½Ä

           deg(v)¡Ã2

À» ¸¸Á·Çϸé, ±×·¡ÇÁ G´Â Hamilton°æ·Î¸¦ °®´Â´Ù.

 

 

 

 

Á¤¸® 6.  Let the number of edges of G be  m.  Then

G has Hamiltonian circuit if  m is equal to or greater

than  1/2 (n2 - 3n + 6), where n is the number of

vertices of G.

 

 

  Graph Theory Reference Links

This is the home page for a series of short interactive tutorials introducing the basic concepts of graph theory. They are designed with the needs of future high school teachers in mind and are currently being used as a supplement to our Mathematical Modeling course (Math 451).

These tutorials are created using the Web Tutor so that most of the pages of this tutorial require that you pass a quiz before continuing to the next page, while others ask for a written comment. The Web Tutor must be able to keep track of your progress, so you will need to register for each of these courses by pressing the [REGISTER] button on the bottom of the first page of each tutorial. (You can use the same username and password for each tutorial, but you will need to register separately for each course.)

     Introduction to Graph Theory (6 pages)

    Starting with three motivating problems, this tutorial introduces the definition of graph along with the related terms: vertex (or node), edge (or arc), loop, degree, adjacent, path, circuit, planar, connected and component. [Suggested prerequisites: none]

    Euler Circuits and Paths

    Beginning with the Königsberg bridge problem we introduce the Euler paths. After presenting Euler's theorem on when such paths and circuits exist, we then apply them to related problems including pencil drawing and road inspection. [Suggested prerequisites: Introduction to Graph Theory]

    Coloring Problems (6 pages)

    How many colors does it take to color a map so that no two countries that share a common border have the same color? This question can be changed to "how many colors does it take to color a planar graph?" In this tutorial we explain how to change the map to a graph and then how to answer the question for a graph. [Suggested prerequisites: Introduction to Graph Theory]

    Adjacency Matrices (Not yet available.)

    How do we represent a graph on a computer? The most common solution to this question, adjacency matrices, is presented along with several algorithms to find a shortest path... [Suggested prerequisites: Introduction to Graph Theory]

Related Resources for these Tutorials:

Other Graph Theory Resources on the Internet:

 

 

 

 

 º» °­ÀÇ¿¡¼­ÀÇ   Eulerian Graph¿Í Hamiltonian

Graph¿¡ °üÇÏ¿© ÇнÀÇÑ´Ù.