Eulerian Graph and Hamiltonian Graph
±×·¡ÇÁÀÌ·Ð Áß¿¡¼ °¡Àå Áß¿äÇÑ ¹®Á¦´Â ÁÖ¾îÁø±×·¡ÇÁ
¿¡¼ ¾î¶² ¿øÇÏ´Â Çà·Î³ª cycle µîÀ» ã´Â ¹æ¹ýÀÌ´Ù.
¿ì¸®´Â ÀÌ°ÍÀ» ÇнÀÇϱâ Àü¿¡ ±âº»ÀûÀÎ ±×·¡ÇÁ
¿ë¾î¸¦ ´Ù½Ã ¾Ë¾Æº¸µµ·Ï ÇսôÙ.
Á¤ÀÇ 1. ¹«¹æÇâ ±×·¡ÇÁ G¿¡¼ ÇÑ Á¤Á¡ vÀÇ Â÷¼ö
(degree)´Â Á¤Á¡ v¿¡ ¿¬°áµÇ´Â ¸ð¼¸®ÀÇ °³¼öÀÌ´Ù.
Á¤Á¡ vÀÇ Â÷¼ö¸¦ deg(v)·Î Ç¥½ÃÇϸç, deg(v)´Â Á¤Á¡
v¿¡ ¿¬°áµÈ ¸ð¼¸®ÀÇ ¼öÀÌ´Ù.
|
´ÙÀ½ ±×·¡ÇÁ¿¡¼ Á¤Á¡¿¡ Ç¥½ÃµÈ ¼ö´Â °¢
Á¤Á¡ÀÇ degree(Â÷¼ö)¸¦ ³ªÅ¸³½´Ù.
Á¤ÀÇ 2. ´Ü¼ø ¹æÇâ ±×·¡ÇÁ G =< V , E >¿¡¼ ÇÑ
Á¤Á¡¿¡ ´ëÇÏ¿© Á¤Á¡ v¸¦ Ãâ¹ßÁ¡À¸·Î °®´Â ¸ð¼¸®ÀÇ
¼ö¸¦ vÀÇ ¿ÜºÎ Â÷¼ö(outdegree)¶ó°í Çϸç, v¸¦
µµÂøÁ¡À¸·Î °®´Â ¸ð¼¸®ÀÇ ¼ö¸¦ vÀÇ ³»ºÎ Â÷¼ö(
indegree) ¶ó°í ¸»ÇÑ´Ù. ³»ºÎ¿Í ¿ÜºÎ Â÷¼öÀÇ ÇÕÀ» ÃÑ
Â÷¼ö (total degree) ¶ó°í ¸»ÇÑ´Ù.
|
¹®Á¦ 1. ´ÙÀ½ ±×¸²¿¡¼ °¢ Á¤Á¡ÀÇ degree¸¦
±¸ÇϽÿÀ.
|
ÀÌÁ¦ ¸ðµç vertex v¿¡ ´ëÇÑ deg(v)ÀÇ ÇÕÀ» ±¸ÇÏ¿©
º¾½Ã´Ù.
ÀÓÀÇÀÇ ¹«¹æÇâ ±×·¡ÇÁ G¿¡¼ ÀÓÀÇÀÇ ¸ð¼¸®(a,b)¿¡
´ëÇÏ¿©,
°¢°¢ÀÇ deg(a)¿Í deg(b)ÀÇ ¼ö´Â Áߺ¹ÇÏ¿© ´õÇÏ°Ô
µÈ´Ù.
°á±¹ G =( V , E )°¡ ¹«¹æÇâ ±×·¡ÇÁ¶ó¸é
¸ðµç vertex v¿¡ ´ëÇÑ deg(v)ÀÇ ÇÕÀº
¿Í °°ÀÌ Àüü ¸ð¼¸®ÀÇ ¼ö¿¡ 2 ¹è¿Í °°´Ù.
Á¤¸® 1. G =( V , E )°¡ ¹«¹æÇâ ±×·¡ÇÁÀÏ ¶§,
¸ðµç vertex v¿¡ ´ëÇÑ deg(v)ÀÇ ÇÕÀº
ÀÌ´Ù. |
¹®Á¦ 2. ÀÓÀÇÀÇ ¹«¹æÇâ ±×·¡ÇÁ¿¡ ´ëÇØ, Ȧ¼ö Â÷¼ö¸¦
°®´Â Á¤Á¡ÀÇ ¼ö´Â ¦¼öÀÓÀ» Áõ¸íÇϽÿÀ.
|
°¢ Á¤Á¡ÀÌ °°Àº Â÷¼ö¸¦ °®´Â ¹«¹æÇâ ±×·¡ÇÁ¸¦
Á¤±Ô(regular)±×·¡ÇÁ¶ó°í ÇÏ¿´´Ù.
ÀÌ ¶§, Á¤¸® 1ÀÇ ÀÀ¿ëÀ¸·Î ¿ì¸®´Â ´ÙÀ½°ú °°Àº ¹®Á¦¸¦
»ý°¢ÇÏ¿© º¾½Ã´Ù.
¸ðµç Á¤Á¡ÀÌ Â÷¼ö 4¸¦ °®°í Àüü 10°³ÀÇ ¸ð¼¸®¸¦
°®´Â Á¤±Ô±×·¡ÇÁ°¡ Á¸ÀçÇÒ ¼ö Àִ°¡ ?
¿ì¸®´Â À̸¦ ÇØ°áÇÏ´Â µµ±¸·Î Á¤¸® 1À» »ç¿ëÇÒ ¼ö
ÀÖ´Ù.
Áï, 2£üE£ü= 20 = 4£üV£üÀ̾î¾ß ÇϹǷΠÂ÷¼ö
4ÀÎ 5°³ÀÇ Á¤Á¡À» °®´Â ±×·¡ÇÁ°¡ Á¸ÀçÇÑ´Ù.
´ÙÀ½ ±×¸²Àº À§ Á¶°ÇÀ» ¸¸Á·ÇÏ´Â 2 °³ÀÇ ºñµ¿Çü
±×·¡ÇÁÀÌ´Ù.
¹®Á¦ 3. ¸ðµç Á¤Á¡ÀÇ Â÷¼ö°¡ 3ÀÎ 20°³ÀÇ ¸ð¼¸®¸¦
°®´Â regular ±×·¡ÇÁ´Â Á¸ÀçÇϴ°¡ ¾Ë¾Æº¸½Ã¿À.
|
ÀÌÁ¦ EulerÀÇ KonigsbergÀÇ ´Ù¸®¹®Á¦¸¦ ÇØ°áÇϱâ
À§ÇÏ¿© °¢ Á¤Á¡¿¡¼ÀÇ Â÷¼ö¸¦ »ç¿ëÇÏ¿© º¾½Ã´Ù.
¾Õ Àý¿¡¼ ÇнÀÇÏ¿´µíÀÌ, Konigsberg µµ½Ã´Â
Pregel°¿¡ ÀÇÇÏ¿© 4°³ÀÇ ±¸¿ªÀ¸·Î ³ª´©¾îÁ³´Ù.
´ÙÀ½ ±×¸²Ã³·³ ,ÀÌ Áö¿ªÀº 7°³ÀÇ ´Ù¸®·Î
¿¬°áµÇ¾îÀÖ¾ú°í ÁֹεéÀº ¾î´À Á¡À» ½ÃÀÛÇÏ¿©
»êÃ¥Çϸé ÇÑ ¹ø Áö³ª°£ ´Ù¸®´Â ´Ù½Ã °ÅÄ¡Áö ¾Ê°í
7°³ÀÇ ´Ù¸®¸¦ ÀüºÎ »êÃ¥ÇÒ ¼ö Àִ°¡¸¦ Ç×»ó
±Ã±ÝÇÏ°Ô »ý°¢ÇÏ¿´´Ù°í ÇÑ´Ù.
ÀÌ ¶§ Euler¶ó´Â ´ë¼öÇÐÀÚ°¡ Á¤Á¡ÀÇ Â÷¼ö¸¦ ÀÌ¿ëÇÏ¿©
ÇØ°áÇÒ ¼ö ÀÖ¾úÀ¸¸ç, ÀÌ°ÍÀÌ °ð ±×·¡ÇÁÀÌ·Ð (graph
theory) ÀÇ ½ÃÀÛÀ̾ú´ø °ÍÀº ¾Õ¿¡¼ ¸»Çѹ٠ÀÖ´Ù.
ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇÏ¿©, Euler´Â ±×¸² 2ó·³
±×·¡ÇÁÀÇ Á¤Á¡°ú °£¼±À» ÀÌ¿ëÇÏ¿© °£´ÜÇÏ°Ô
Ç¥ÇöÇÏ¿´°í. ¿©±â¼ °¢°¢ÀÇ Á¤Á¡ÀÇ Â÷¼ö´Â
deg(1) = deg(2) = deg(3) = 3, deg(5) = 5.
±×¸² 1
±×¸² 2
À§ ±×¸²¿¡¼ 1°ú 2´Â °ÀÇ ¾çÂÊ ±â½¾À» ÀǹÌÇϸç,
3°ú 4´Â 2°³ÀÇ ¼¶À» ³ªÅ¸³½´Ù. ÀÌ Á¡µéÀ» ¿¬°áÇÏ´Â
7°³ÀÇ ¼±µéÀº 7°³ÀÇ ´Ù¸®¸¦ ³ªÅ¸³½´Ù.
À§ ¹®Á¦ÀÇ ÇØ°áÀº ±×·¡ÇÁ¿¡¼ Ȧ¼ö Â÷¼öÀÇ Á¤Á¡ÀÇ
¼ö¿¡
´Þ·ÁÀÖ´Ù´Â °ÍÀ» Euler´Â ¹ß°ßÇß´Ù.
Á¤ÀÇ 3. G =( V , E )¸¦ ¹«¹æÇâ ±×·¡ÇÁ¶ó°í ÇÏÀÚ.
¸¸ÀÏ °¢°¢ÀÇ ¸ð¼¸®¸¦ Á¤È®ÇÏ°Ô ÇÑ ¹ø¾¿ °æÀ¯Çؼ
±×·¡ÇÁÀÇ ¸ðµç ¸ð¼¸®¸¦ Áö³¯ ¼ö ÀÖ´Â °æ·Î°¡
Á¸ÀçÇÑ´Ù¸ç, ±×·¡ÇÁ G ´Â Euler°æ·Î (Euler path)¸¦
°®´Â´Ù°í ÇÑ´Ù. ¶Ç, Euler circuit À̶õ Euler
°æ·Î·Î¼ circuitÀÎ °ÍÀ» ÀǹÌÇÑ´Ù.
|
ÀÌÁ¦ GraphÀÌ·ÐÀÇ °¡Àå Áß¿äÇÑ Á¤¸®¸¦ ÇнÀÇϵµ·Ï
ÇսôÙ
Á¤¸® 2. G =( V , E )¸¦ ¹«¹æÇâ ±×·¡ÇÁ¶ó°í ÇÏÀÚ.
ÀÌ ¶§ ±×·¡ÇÁ G°¡ Euler °æ·Î¸¦ °®±â À§ÇÑ ÇÊ¿äÃæºÐ
Á¶°ÇÀº ±×·¡ÇÁ G°¡ ¿¬°áµÈ ±×·¡ÇÁÀ̸ç, ¸ðµç Á¤Á¡ÀÇ
Â÷¼ö(degree)°¡ ¦¼öÀÎ °ÍÀÌ´Ù.
|
Áõ¸í. À§ Á¤¸®ÀÇ Áõ¸íÀº ±×·¡ÇÁÀ̷п¡ ´ëÇÑ Ç¥ÁØÀûÀÎ
±³ÀçµéÀ» Âü°íÇÏ¿© ÇнÀÇϱ⠹ٶø´Ï´Ù.
Á¤¸® 3. G =( V , E )¸¦ ¹«¹æÇâ ±×·¡ÇÁ¶ó°í ÇÏÀÚ.
(1) If a graph G has more than two vertices
of
odd degree, then there can be no Euler path
in G.
(2) If G is connected and has exactly two
vertices of odd degree, there is an Euler Path
in G.
Any Euler path in G must begin at on vertex
of odd degree and end at the other.
|
¹®Á¦ 4. ´ÙÀ½ ±×·¡ÇÁ¿¡¼ Euler Path¸¦ ã¾Æ
º¸½Ã¿À.
(1)
(2)
(3)
|
Euler°æ·Î´Â ÁÖ¾îÁø ±×·¡ÇÁ¿¡¼ ¸ð¼¸®¿¡ °üÇÑ
°æ·Î¸¦ ¹ß°ßÇÏ¿´Áö¸¸ , Euler´Â ¸ðµç Á¤Á¡À» °æÀ¯ÇÏ´Â
°æ·Î¿¡ ´ëÇÏ¿© ´Ù·çÁö ¾Ê¾Ò´Ù.
¿©±â¼ ¿ì¸®´Â ¿¬°áµÈ ±×·¡ÇÁ°¡ °¢ Á¤Á¡À» Á¤È®È÷
Çѹø¸¸ °æÀ¯ÇÏ´Â °æ·Î¸¦ °®°í ÀÖ´ÂÁö¸¦
»ý°¢ÇÏ¿©º¾½Ã´Ù.
ÀÌ¿Í °°Àº ¹®Á¦´Â, salesmanÀÇ ¿©Çà µî°ú °°ÀÌ
°æÁ¦ÀûÀ¸·Î ÀǹÌÀÖ´Â ÀÀ¿ë¹®Á¦ÀÌ´Ù.
Áï, Á¤Á¡µéÀº ¹æ¹®ÇÒ µµ½ÃµéÀ» ³ªÅ¸³ÂÀ¸¸ç, ÀÌ °ÔÀÓÀÇ
¸ñÀûÀ¸·Î´Â °¢ µµ½Ã¸¦ Á¤È®È÷ ÇÑ ¹ø¸¸ °æÀ¯ÇÏ´Â
ÃÖÀûÀÇ sales ¿©Çà°æ·ÎÀ» ¹ß°ßÇÒ ¼ö Àִ°¡ÇÏ´Â
¹®Á¦ÀÌ´Ù.
¿¬°áµÈ ±×·¡ÇÁ°¡ °¢ Á¤Á¡À» Á¤È®È÷ Çѹø¸¸ °æÀ¯ÇÏ´Â
°æ·ÎÀÎ ÇÑ circle(¼øȯ)À» ¾ÆÀÏ·£µåÀÇ ¼öÇÐÀÚ
Hamilton (Sir William Rowan Hamilton, 1805 -
1865)ÀÇ À̸§À» µû¼ Hamilton ¼øȯ (Hamiltonian
cycle) À̶ó°í ºÎ¸£¸ç, Hamiltion ¼øȯÀ» °®´Â ¸ðµç
±×·¡ÇÁ¸¦ Hamilton ±×·¡ÇÁ(Hamiltonian graph)¶ó°í
ÇÑ´Ù.
Áï, ±×·¡ÇÁ G =( V , E )°¡ ÁÖ¾îÁø ¸ðµç Á¤Á¡µéÀ»
Á¤È®ÇÏ°Ô Çѹø¸¸ °æÀ¯Çؼ ÇϳªÀÇ °æ·Î°¡ ÀÖ´Â
±×·¡ÇÁ¸¦ ¿ì¸®´Â Hamilton°æ·Î°¡ Á¸ÀçÇÑ´Ù°í ÇÑ´Ù°í
ÇÑ´Ù.
´õ¿íÀÌ ±×·¡ÇÁ¿¡¼ ¸ðµç Á¤Á¡µéÀ» Æ÷ÇÔÇÏ´Â »çÀÌŬÀ»
¿ì¸®´Â Hamilton »çÀÌŬÀ̶ó°í Çϸç, ÇÑ ¸ð¼¸®¸¦
Á¦¿ÜÇÑ °æ·Î¸¦ ¿ì¸®´Â Hamilton °æ·Î¶ó°í ÇÑ´Ù.
ÁÖ¾îÁø ±×·¡ÇÁ G =( V , E )¿¡¼ , Hamilton°æ·Î°¡
Àִ°¡¸¦ È®ÀÎÇÏ·Á¸é ´ÙÀ½À» °ËÅäÇÏ¿©¾ß ÇÑ´Ù.
1. ¸¸ÀÏ ±×·¡ÇÁ G°¡ Hamiltion °æ·Î¸¦ °®´Â´Ù¸é, V¿¡
¼ÓÇÑ ¸ðµç Á¤Á¡µéÀÇ Â÷¼ö´Â 2º¸´Ù Å©´Ù. Áï deg(v)
¡Ã2.
2.¸¸ÀÏ V¿¡ ¼ÓÇÏ´Â Á¤Á¡ a¿¡ ´ëÇØ deg(a) =2 À̸é,
Á¤Á¡ a¿¡ ¿¬°üµÈ µÎ °³ÀÇ ¸ð¼¸®µéÀº ´ç¿¬È÷ ±×·¡ÇÁ
G¿¡ ´ëÇÑ Hamilton°æ·Î¿¡ ¼ÓÇÏ´Â ¸ð¼¸®ÀÌ´Ù.
3. ¸¸ÀÏ V¿¡ ¼ÓÇÏ´Â Á¤Á¡ a¿¡ ´ëÇØ deg(a) = 2 À̸é,
Á¤Á¡ a¿¡ ¿¬°üµÈ µÎ °³ÀÇ ¸ð¼¸®´Â ±×·¡ÇÁ GÀÇ
Hamilton °æ·Î¿¡ ¼ÓÇÏ´Â °£¼±¿¡¼ Á¦¿ÜµÈ´Ù.
4. ±×·¡ÇÁ G¿¡¼ Hamilton °æ·Î¸¦ ã´Â °úÁ¤¿¡¼ ,
±×·¡ÇÁÀÇ ¸ðµç Á¤Á¡µéÀ» Æ÷ÇÔÇÏÁö ¾Ê´Â ºÎºÐ
±×·¡ÇÁ¿¡¼ °æ·Î¸¦ ¾òÀ» ¼ö ¾ø´Ù.
¹®Á¦ 5. ´ÙÀ½ ±×·¡ÇÁ¿¡¼ Hamilton °æ·Î¸¦
ã¾Æ º¸½Ã¿À.
(1)
(2)
|
ÀÌÁ¦ ³¡À¸·Î, ¿ì¸®´Â ´õ¿í ÀϹßÈµÈ Á¤¸®·Î ´ÙÀ½À»
¼Ò°³ÇÑ´Ù.
Á¤¸® 4. ¸¸¾à G =( V , E )°¡ n¡Ã3ÀÎ Á¤Á¡À» °®´Â
´Ü¼ø ±×·¡ÇÁ¶ó°í ÇÒ ¶§, ¼·Î ÀÎÁ¢ÇÏÁö ¾Ê´Â µÎ Á¤Á¡
u¿Í v»çÀÌ¿¡ ½Ä
deg(u) + deg(v) ¡Ã n
ÀÌ ¼º¸³Çϸé, ±×·¡ÇÁ G´Â Hamilton °æ·Î¸¦ °®´Â´Ù.
|
Áõ¸í. À§ Á¤¸®ÀÇ Áõ¸íÀº ±×·¡ÇÁÀ̷п¡ ´ëÇÑ Ç¥ÁØÀûÀÎ
±³ÀçµéÀ» Âü°íÇÏ¿© ÇнÀÇϱ⠹ٶø´Ï´Ù.
µû¸§Á¤¸®. G has a Hamiltonian circuit if each
vertex
has degree greater than or equal to n/2.
|
Á¤¸® 5. ±×·¡ÇÁ G =( V , E )°¡ n¡Ã3ÀÎ Á¤Á¡À» °®´Â
´Ü¼ø ±×·¡ÇÁ¶ó°í ÇÒ ¶§, ¸ðµç Á¤Á¡ v¿¡ ´ëÇØ ´ÙÀ½
ºÎµî½Ä
deg(v)¡Ã2
À» ¸¸Á·Çϸé, ±×·¡ÇÁ G´Â Hamilton°æ·Î¸¦ °®´Â´Ù.
|
Á¤¸® 6. Let the number of edges of G be m.
Then
G has Hamiltonian circuit if m is equal to or
greater
than 1/2 (n2 - 3n + 6), where n is the number
of
vertices of G.
|
Graph Theory Reference Links
This is the home page for a series of short interactive
tutorials introducing the basic concepts of graph theory.
They are designed with the needs of future high school
teachers in mind and are currently being used as a
supplement to our Mathematical Modeling course (Math
451).
These tutorials are created using the Web Tutor so that
most of the pages of this tutorial require that you pass a
quiz before continuing to the next page, while others ask
for a written comment. The Web Tutor must be able to
keep track of your progress, so you will need to register
for each of these courses by pressing the [REGISTER]
button on the bottom of the first page of each tutorial.
(You can use the same username and password for each
tutorial, but you will need to register separately for each
course.)
Introduction to Graph Theory (6 pages)
Starting with three motivating problems, this tutorial
introduces the definition of graph along with the
related terms: vertex (or node), edge (or arc), loop,
degree, adjacent, path, circuit, planar, connected and
component. [Suggested prerequisites: none]
Euler Circuits and Paths
Beginning with the Königsberg bridge problem we
introduce the Euler paths. After presenting Euler's
theorem on when such paths and circuits exist, we
then apply them to related problems including pencil
drawing and road inspection. [Suggested
prerequisites: Introduction to Graph Theory]
Coloring Problems (6 pages)
How many colors does it take to color a map so that
no two countries that share a common border have
the same color? This question can be changed to "how
many colors does it take to color a planar graph?" In
this tutorial we explain how to change the map to a
graph and then how to answer the question for a
graph. [Suggested prerequisites: Introduction to
Graph Theory]
Adjacency Matrices (Not yet available.)
How do we represent a graph on a computer? The
most common solution to this question, adjacency
matrices, is presented along with several algorithms
to find a shortest path... [Suggested prerequisites:
Introduction to Graph Theory]
Related Resources for these Tutorials:
Other Graph Theory Resources on the Internet:
|