Á¦ 10 Àå ¾ÏÈ£À̷аú ±× ÀÀ¿ë
3. HAMMING ONE-ERROR CORRECTING CODES I
|
||||||
|
Á¦ 10 Àå ¾ÏÈ£À̷аú ±× ÀÀ¿ë
4. HAMMING ONE-ERROR CORRECTING CODES II
|
||||||
|
||||||
HAMMING ONE-ERROR CORRECTING BINARY CODES
HAMMING ONE-ERRORCORRECTING BINARY CODE¸¦ È°¿ëÇÏ´Â ¹æ¹ý¿¡ °üÇÏ¿© ÇнÀÇϵµ·Ï ÇսôÙ.
´ÙÀ½ÀÇ °ÀÇ´Â R. C. Bose & B. Manvel Àú¼ÀÎ Introduction to Combinatorial Theory John Wiley & Sons Inc., 1984. ÀÇ 7ÀåÀÇ ³»¿ëÀ» Âü°íÇÏ¿© ÇнÀÇϱ⠹ٶø´Ï´Ù.
¾Õ¿¡¼ ÇнÀÇÑ ¹Ù¿Í °°ÀÌ, Àü¼ÛµÈ code´Â ¿©·¯ °¡Áö noise ¿äÀο¡ ÀÇÇÏ¿© ¿ø·¡ÀÇ code¿Í ´Ù¸¦ ¼ö ÀÖ´Ù. ÀÌ ¶§, decodeÇÏ´Â °úÁ¤¿¡¼ °¡´ÉÇÑÇÑ ¿ø·¡ÀÇ code·Î º¹¿øÇϱâ À§ÇÏ¿© ¿ì¸®´Â Minimum distance rule¿¡ ÀÇÇÑ error correctingÀ» ÇÏ¿©¾ß ÇÑ´Ù.
Minimum distance rule
(I) x' = (x1, x2,..., xn) : transmitted word y' = (y1, y2,..., yn) : received word. C : Hamming code Compare y' with all the code words in C and There is no error( x' matches y') ¢¡ x' = y'
(2) À§ÀÇ Example 1ÀÇ codeÀÎ °æ¿ì¿¡ y' = (1, 0, 1, 0, 1, 0, 0)°¡ received word ¶ó¸é, y'Àº code ¸ðÀ½¿¡ ¾ø´Ù. µû¶ó¼ minimum distance rule¿¡ ÀÇÇÏ¿© y' ¿¡¼ ÃּҰŸ® 1ÀÎ x' ¸¦ C code¿¡¼ ãÀ¸¸é x' = (1, 0, 1, 1, 1, 0, 0). µû¶ó¼, x'ÀÌ transmitted word ÀÌ´Ù.
(3) x' = (x1, x2,..., xn) : transmitted word y' = (y1, y2,..., yn) : received word. e' = (e1, e2,... ei ,..., en) : error vector (where ei =1) e1 = 0 ¢¢ i- th coordinate has been correctly transmitted. w(e') : number of errors in the transmission. Now y' = x' + e' Therefore, y'H' = x'H' + e'H' x'H' = 0 (x' : code word from (2)) Hence y'H' = e'H'
We define y'H' to be the syndrome of the received word y' .
(1) y'H' = 0 (null vector) ¢¢ no error ¢¢ y' : transmitted word(x' ) (2) If there is one error, say in the I-th coordinate, then the syndrome is hi' , the I-th row of H'. If the syndrome matches the i-th row of H' conclude that there is an error in the I-th coordinate and the transmitted word is x' = y'- ei' , where ei' = (0, 0, ¡¦ , 1, ¡¦, 0) [in the th coordinate is 1, & the other coordinates are zero£Ý
In the above Example 1,
(¥¡) y' = ( 1, 1, 0, 0, 1, 0, 0) : received word y' H' = (0, 0, 0, 0, 0, 0, 0) : null vector thus x' = y'
(¥¢) y' =(1, 0, 1, 0, 1, 0, 0) : received word y' H' = Hy
Since this matches the fourth row of H' , then e' =(0, 0, 0, 1, 0, 0, 0). Thus x' = y'-e' = (1, 0, 1, 0, 1, 0, 0) - (0, 0, 0, 1, 0, 0, 0) = (1, 0, 1, 1, 1, 0, 0)
Once the syndrome has been calculated the number of comparisons needed is n=2r-1, which is 15 for r = 4, & 31 for r = 5.
Solution of (a): x' = (1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, x, y, z, u)
¢¡ x = 0 ,y = 1,z = 1,u = 0. Thus x' = (1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0)
Solution of (b) : (1) y' = (1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1)
¢¡ e' = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) x' = y'-e' = (1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1) - (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) = (1, 0, 1, 0, 1, 1, 0, 1*, 1, 1, 1, 1, 1, 1, 1) (2) y'= (1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1)
¢¡ e' = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) x' = y'-e' = (1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1) - (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) = (1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1) (3) y' = (1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1)
|