GraphÀÇ Á¤ÀÇ
±×·¡ÇÁ ÀÌ·Ð(graph theory)À» ÀÌ¿ëÇÑ ¹®Á¦ ÇØ°áÀº
1736³â ½ºÀ§½ºÀÇ ¼öÇÐÀÚ Leonard Euler(1707-83)¿¡
ÀÇÇÏ¿© ÃÖÃÊ·Î ½ÃÀ۵Ǿú´Ù. ´ç½Ã ·¯½Ã¾ÆÀÇ
Konigsberg¿¡´Â ±×¸² 1ó·³ Pergel °¿¡ ÀÖ´Â µÎ
°³ÀÇ ¼¶°ú ÀÏ°ö °³ÀÇ ´Ù¸®·Î ±¸¼ºµÈ »êÃ¥ÇÒ ¼ö ÀÖ´Â
°ø¿øÀÌ ÀÖ¾ú´Ù. ÀÌ°÷ ½Ã¹ÎµéÀº ÀÚÁÖ »êÃ¥À» Áñ±â¸é¼
À̵éÀº Áý¿¡¼ Ãâ¹ßÇÏ¿© Á¤È®ÇÏ°Ô ÀÏ°ö °³ÀÇ ´Ù¸®¸¦
»êÃ¥Çϴµ¥ Áö³ª°£ ´Ù¸®´Â ´Ù½Ã Áö³ªÁö ¾Ê´Â ¹æ¹ýÀ¸·Î
À̾îÁö´Â »êÃ¥°æ·Î°¡ Á¸ÀçÇÏ´ÂÁö ±Ã±ÝÇÏ°Ô
»ý°¢Çß¾ú´Ù. ±×·±µ¥ Euler´Â ±×¸² 2ÀÇ ´Ü¼øȵÈ
±×·¡ÇÁ ÀÌ·ÐÀ» ÀÌ¿ëÇÏ¿© ÀÌ ¹®Á¦¸¦ ½±°Ô ÇØ°áÇÒ ¼ö
ÀÖ¾ú´Ù.
±×¸² 1
±×¸² 2
1°ú 2´Â °ÀÇ ¾çÂÊ ±â½¾À» ÀǹÌÇϸç, 3°ú 4´Â 2°³ÀÇ
¼¶À» ³ªÅ¸³½´Ù. ÀÌ Á¡µéÀ» ¿¬°áÇÏ´Â 7°³ÀÇ ¼±µéÀº
7°³ÀÇ ´Ù¸®¸¦ ³ªÅ¸³½´Ù. ¿©±â¼ Euler´Â ÀÌ ¹®Á¦¸¦
´ÙÀ½°ú °°Àº ¹æ¹ýÀ¸·Î ¼³¸íÇÏ¿´´Ù.
1,2,3,4 Áß ¾î´À ÇÑ À§Ä¡¿¡¼ ½ÃÀÛÇؼ °¢ ´Ù¸®¸¦
Á¤È®ÇÏ°Ô Çѹø¸¸ »êÃ¥ÇÏ´Â ¹æ¹ýÀ¸·Î Ãâ¹ßÇß´ø À§Ä¡·Î
µÇµ¹¾Æ ¿À´Â °ÍÀÌ °¡´ÉÇÒ±î?
ÀÌ ¹®Á¦¿¡ ´ëÇÑ ÇØ´äÀº µÚ¿¡¼ ÇнÀÇÒ Euler¿Í
Hamilton°æ·ÎÀÇ À̷п¡¼ ¾Ë ¼ö ÀÖÀ» °ÍÀÌ´Ù.
Euler´Â ÁÖ¾îÁø ±×·¡ÇÁ¿¡¼ Á¤Á¡ÀÇ Â÷¼ö(degree)°¡
¦¼ö¸¦ °®°í ÀÖÀ» ¶§, ÀÌ ¹®Á¦°¡ ÇØ°áµÊÀ» ¼öÇÐÀû
Áõ¸íÀ¸·Î º¸¿´´Ù.
À§ÀÇ ±×¸² 2¿Í °°Àº µµÇüÀ» ±×·¡ÇÁ(graph)¶ó°í
ºÎ¸£¸ç, °¢ Á¡µéÀ» Á¤Á¡(vertex) V·Î, ´Ù¸®¿Í µµ·Î¸¦
¸ð¼¸®(edge) E·Î Ç¥ÇöµÇ´Â ±×·¡ÇÁ G = (V, E)¶ó°í
Çϸç, ÀÌ·¯ÇÑ ±×·¡ÇÁÀÌ·ÐÀº 1736³â EulerÀÇ ³í¹®¿¡¼
óÀ½ ¹ßÇ¥µÇ¾ú´Ù.
±×·¡ÇÁ ÀÌ·ÐÀº ¼öÇÐÀÇ °¡Àå ¼º°øÀûÀÎ ÀÀ¿ë ºÎºÐÀÇ
ÇϳªÀ̸ç, ÀÌ°ÍÀº Àü»êÇÐ, ¹°¸®ÇÐ, ÈÇÐ, °øÇÐ,
ÀÇÇÐ,»ý¹°ÇÐ, ½É¸®ÇÐ, °æÁ¦ÇÐ, µµ½Ã°èȹ, ÀΰøÁö´ÉÇÐ,
¾ð¾îÇÐ µîÀÇ ´Ù¸¥ ¿©·¯ ºÐ¾ß¿¡¼ Áß¿äÇÑ ÀÀ¿ëÀ» °®°í
ÀÖ´Ù.
´ÙÀ½ÀÇ °ÀÇ ³»¿ëÀº ±×·¡ÇÁÀ̷п¡ ´ëÇÑ Ç¥ÁØÀûÀÎ
±³°ú¼¸¦ Âü°íÇÏ¿© ÇнÀÇϱ⠹ٶø´Ï´Ù.
Á¤ÀÇ 1. V¸¦ °øÁýÇÕÀÌ ¾Æ´Ñ Á¤Á¡(vertex)µéÀÇ
ÁýÇÕÀ̶ó°í ÇÏ°í ¸ð¼¸®(Edge)µéÀÇ ÁýÇÕÀ»
E¡öV¡¿V¶ó°í ÇÏÀÚ .
ÀÌ ¶§, ¿ì¸®´Â G = < V, E > ¸¦ ¹æÇâ±×·¡ÇÁ(digraph
¶Ç´Â directed graph)¶ó°í Çϸç, ¹æÇâÀÌ ¾ø´Â
±×·¡ÇÁ´Â ´Ü¼øÈ÷ G = ( V, E )·Î Ç¥½ÃÇϱâ·Î ÇÑ´Ù.
±×·¡ÇÁ G¿¡¼ ´Ù¸¥ Á¤Á¡µé°ú ¿¬°áµÇÁö ¾ÊÀº Á¤Á¡ vÀ»
°í¸³Á¤Á¡À̶ó°í ÇÏ°í, °í¸³Á¤Á¡À¸·Î¸¸ ÀÌ·ç¾îÁø
±×·¡ÇÁ¸¦ °ø ±×·¡ÇÁ (null graph)¶ó°í ÇÑ´Ù.
|
±×·¡ÇÁ G = (V, E)¿¡¼ V¿Í E´Â À¯ÇÑÇÑ ¿ø¼ÒµéÀÇ
ÁýÇÕÀ¸·Î °¡Á¤ÇÑ´Ù.
ÀÓÀÇÀÇ ¸ð¼¸® x ¡ô E °¡ VÀÇ ¼ø¼½Ö <u, v> ȤÀº
ºñ¼ø¼½Ö (u, v)¿Í ¿¬°üÀÌ ÀÖÀ» ¶§, ¸ð¼¸® x´Â Á¤Á¡
u ¿Í v¸¦ ¿¬°á(connect)ÇÑ´Ù°í ¸»ÇÏ°í, ÀÓÀÇÀÇ
¸ð¼¸®¿¡ ÀÇÇÏ¿© ¿¬°áµÈ Á¤Á¡µéÀÇ ½ÖÀ» ÀÎÁ¢ÇÑ
Á¤Á¡(adjacent vertices)µéÀ̶ó ÇÑ´Ù. ¹æÇâ ±×·¡ÇÁ¸¦
³ªÅ¸³¾ ¶§, Á¤Á¡Àº Á¡ a, b, c µîÀ¸·Î Ç¥½ÃÇϸç
¸ð¼¸®´Â <a,b>, <a,c> µîÀ¸·Î Ç¥½ÃÇÑ´Ù.
´ÙÀ½°ú °°Àº ¿ë¾î¸¦ ¾Ë¾Æº¾½Ã´Ù.
Three properties of graphs that are
important in many problems are size,
regularity, diameter.
The size of a graph is the number of
vertices it has.
´ÙÀ½ ±×·¡ÇÁ´Â size°¡ 1ºÎÅÍ 9 ±îÁöÀÎ
graph¸¦ ³ªÅ¸³½´Ù.
Just like the diameter of a circle measures
the distance across a circle, diameter is a
measure of distance between vertices in a
graph. The idea of "distance" in a graph is
different from the "distance" we commonly
measure with a tape measure, however,
because we can stretch or shrink the
edges of a graph to be any length at all.
Imagine traveling from vertex to vertex
along the edges of a graph. Each trip
along one edge, no matter how long or
short the edge happens to be, counts as
one move. The distance from one vertex
to another is the smallest number of
moves that it takes to get there.
The diameter of a circle measures the
distance between two points on the circle
that are farthest apart. Similarly, the
diameter of a graph is the distance
between the two vertices of the graph that
are farthest apart.
¿¹Á¦ 1. ±×¸² 3ÀÇ ±×·¡ÇÁ´Â ´ÙÀ½ ¼ººÐÀ» °®´Â´Ù .
¸ð¼¸®ÀÇ ÁýÇÕ E = { < a , a >, < a , b >,
< a , d> , < b , c >}
Á¤Á¡ÀÇ ÁýÇÕ V = { a , b , c , d , e }
±×¸² 3
|
¹æÇâ ±×·¡ÇÁ G = <V, E> ¿¡¼ x ¡ô E °¡ µÎ Á¤Á¡ÀÇ
¼ø¼½Ö <u, v> ·Î ¿¬°áµÈ ¹æÇâÀÌ ÀÖ´Â ¸ð¼¸®ÀÏ ¶§,
¸ð¼¸® x ´Â u ¸¦ Ãâ¹ßÁ¡ (initial vertex) , v¸¦
µµÂøÁ¡ (terminal vertex ) À̶ó°í ÇÑ´Ù. ¹æÇâ
±×·¡ÇÁ¿¡¼ , ¸ð¼¸®´Â È»ìÇ¥·Î Ç¥½ÃÇÑ´Ù.
¹«¹æÇâ ±×·¡ÇÁ(undirected graph)ÀÇ ¸ð¼¸®´Â
(a , b ), ( b , c ) , ( a , a ), ( a , d ) µî°ú °°À¸¸ç
ÀϹÝÀûÀÎ ¸ð¼¸® ( a , b )´Â µÎ °³ÀÇ ¹æÇ⼺ ¸ð¼¸®
{< a , b >,< b , a>} ¸¦ ÀǹÌÇÑ´Ù. ¿©±â¼,
(a , b ) = (b , a )À̸é a = b °¡ µÈ´Ù.
Á¤ÀÇ 2. ÆòÇàÇÑ ¸ð¼¸®°¡ Á¸ÀçÇÏÁö ¾Ê´Â ±×·¡ÇÁ¸¦
Æò¸é±×·¡ÇÁ(planar graph ¶Ç´Â simple graph)¶ó°í
Çϸç, ÆòÇàÇÑ ¸ð¼¸®µéÀÌ Á¸ÀçÇÑ´Ù¸é
ºñÆò¸é±×·¡ÇÁ(nonplanar ¶Ç´Â multigraph)¶ó°í
¸»ÇÑ´Ù.
|
±×¸² 4(1)
±×¸² 4(2)
±×¸² 4(3)
±×¸² 4(1)´Â Æò¸é±×·¡ÇÁÀÇ ¿¹, ±×¸² 4(2)´Â
ºñÆò¸é±×·¡ÇÁÀÇ ¿¹ÀÌ°í, ±×¸² 4(3)Àº Æò¸é±×·¡ÇÁ¸¦
ºñÆò¸é±×·¡ÇÁ·Î ±×¸° ¿¹ÀÌ´Ù.
ÀÌÁ¦ ±×·¡ÇÁÀÇ ¼ºÁú¿¡ ´ëÇÏ¿© Á¤ÀÇÇÏ¿© º¾½Ã´Ù.
Á¤ÀÇ 4. ±×·¡ÇÁ G = (V, E)¿¡¼ ¿ä¼Ò
(components)ÀÇ ¼ö´Â ¿¬°áµÈ ±×·¡ÇÁÀÇ ¼ö¸¦
ÀǹÌÇϸç, k(G)·Î¼ ³ªÅ¸³½´Ù.
|
¿¹Á¦ 3. ´ÙÀ½ ±×¸² 5(a)´Â Àüü°¡ ¿¬°áµÈ ±×·¡ÇÁÀ̱â
¶§¹®¿¡ K(G1) = 1 ÀÌÁö¸¸, ±×¸² 5(b)´Â µÎ °³ÀÇ µ¶¸³
¿¬°á ±×·¡ÇÁÀ̹ǷΠK(G2) = 2ÀÌ´Ù.
|
|