Á¦ 11 Àå  Four Color Problem and Knot Theory

 

      1. Semigroups and Groups

       

   1. Semigroups and Groups

 

 Group°ú  SemigroupÀÇ Á¤ÀÇ´Â ¹«¾ùÀΰ¡ »ý°¢ÇÏ¿© º¸½Ã¿À.  ¶Ç,  ÀÌ·¯ÇÑ Ãß»óÀûÀÎ modelÀÇ °¡Àå ±âº»ÀûÀÎ ¿¹´Â ¹«¾ùÀΰ¡ »ý°¢ÇÏ¿© º¸½Ã¿À.

 

 

 DiscreteÇÑ ±¸Á¶¸¦ ÀÌÇØÇϱâ À§ÇÏ¿© ÇÊ¿äÇÑ ¿©·¯

¼öÇÐ ÀÌ·Ð Áß¿¡¼­ ¸ÕÀú ±âº»ÀûÀÎ semigroup °ú

groupÀÇ °³³äÀ» ¾Ë¾Æº¸°í computer À̷п¡

È°¿ëÇÏ´Â ¹æ¹ý¿¡ °üÇÏ¿© ÇнÀÇϵµ·Ï ÇÑ´Ù.

 

 

 

 

 

   Semigroups and Groups

 

DiscreteÇÑ ±¸Á¶¸¦ ÀÌÇØÇϱâ À§ÇÏ¿© ÇÊ¿äÇÑ ¿©·¯

¼öÇÐ ÀÌ·Ð Áß¿¡¼­ ¸ÕÀú ±âº»ÀûÀÎ semigroup °ú

groupÀÇ °³³äÀ» ¾Ë¾Æº¸°í computer À̷п¡

È°¿ëÇÏ´Â ¹æ¹ý¿¡ °üÇÏ¿© ÇнÀÇϵµ·Ï ÇսôÙ.

 

´ÙÀ½ÀÇ °­ÀÇ ³»¿ëÀº B. Kolman, R.C. Bussy & S.

RossÀÇ Àú¼­ÀÎ

Discrete Mathematical Structures,

Prentice Hall Inc., 1996.

ÀÇ 9ÀåÀÇ ³»¿ëÀ» Âü°íÇÏ¿© ÇнÀÇϱ⠹ٶø´Ï´Ù.

 

 

(1) Binary Operations Revisited

 

¡ß A binary operation on a set A is an

everywhere defined function f : A x A¡æA

- f  is defined for each ordered pain of (a,b)

-  only one element of A is assigned to each     (a,b)

-  if a,b¡ôA then a*b¡ôA ; A is closed under     the operation *

 

¡ß Properties of binary operations.

- a binary operation * on a set A is said to be    commutative  if a*b = b * a for all a,b¡ôA

- a binary operation * on a set  A is said to be    associative  if

    a*(b*c)= (a*b)*c    for all a,b,c¡ôA

- a binary operation * on a set is said to be    idempotent  if a*a = a for all a¡ôA

 

 

(2) Semigroups

 

¡ß  A Semigroups is a nonempty set S together     with an associative binary operation *     defined on S.

- we refer to a*b  as the product of a and b.

- the semigroup (S,*) is said to be    commutative if * is a commutative operation.

- let A = (a1, a2, ... , an) be a nonempty set,   then (A*,, (concatenation)) is a semigroup   since (¥á,¥â),¥ã = ¥á,(¥â,¥ã) for ¥á,¥â,¥ã¡ôA* .

  The semigroup (A*, , ) is called the  free   semigroup generated by A

 

¡ß An element e in a semigroup  (S,*) is called

   an identity if e*a=a*e=a  for all a¡ôS

   (Example) The number 0 is an identity in the   semigroup (Z,+)

   The semigroup (Z+,+)  has no identity    element.

 

- If a semigroup (S,*)  has an identity, it is unique.

[Suppose that e and e' are identity elements in S, then e*e'=e' and e*e'=e', hence e = e'.]

 

¡ßA monoid is a semigroup (S,*) that has an   identity.

 

¡ß Let (S,*) be a semigroup and T¡øS

- If T is closed under the operation *, then

  (T,*) is a subsemigroup of (S,*).

- If e (identity)¡ôT,  then (T,*) is a submonoid

   of (S,*).

 

¡ß Let (S,*) and (T,*') be two semigroups.

- a function f:S¡æT  is called an isomorphism

from (S,*) to (T,*')  if it is one to one

correspondence and f(a*b)=f(a)*'f(b)  for

every a, b in S.

-f is an isomorphism from S to T, then

f-1 is an isomorphism from T to S.

 

 

Example.  Let T be the set of all even

integers, then ( Z ,+) and ( Z ,+) are

isomorphic define f : Z ¡æT by f(a) = 2a,

thenf is one-to-one and  onto (hence

one-to-one correspondence) and f(a+b) =

2(a+b) = 2a + 2b = f(a) + f(b) .

 

 

 

     

    Theorem 2. Let (S,*) and ( T,*') be

    monoids with respective identities e and

    e'. Let f : S¡æT be an isomorphism, then

    f(e)=e'. 

 

Proof. Let a¡ô S and b¡ô T and f(a) = b

b = f(a) = f(e*a) = f(a)*'f(e)=b*'f(e), hence

f(e)=e'.   Q.E.D.

 

 

¡ß Let (S,*) and ( T,*') be two semigroups.

- an everywhere defined function f : S¡æT is

called a homomorphism from (S,*) to ( T,*') if

f(a*b) = f(a)*'f(b) for every  a, b in S.

 

- if f is also onto T is the homomorphic image

of S.

 

 

 

Theorem 4. Let f be a homomorphism from a

semigroup (S,*) to semigroup ( T,*')   

If S' is a subsemigroup of (S,*) then f(S'),

the image of S' under f is a subsemigroup of

( T,*').

 

 

Proof.  If  t1,t2¡ô f(S') then t1=f(s1) and

t2=f(s2) for  some s1,s2 .

t1*' t2 = f (s1 ) *'f (s2 ) = f (s1*s2 ) = f (s3)

where s3¡ô S',  hence t1*' t2 = f(S')

 Q.E.D.

 

 

Theorem 5. If f is a homomorphism from a

commutative semigroup (S,*) onto a

semigroup ( T,*')   then ( T,*')   is also

commutative .

 

 

Proof. Let t1,t2¡ô T then t1= f(s1) and

t2=f(s2) for s1,s2¡ôS.

    t1*' t2 = f (s1 ) *'f (s2 )

  =  f (s1*s2 ) = f (s2*s1 ) = f (s2 ) *'f (s1)

  = t2 *' t1.   

  Q.E.D.

 

 (3) Products and Quotients of      Semigroups

 

 

 

Theorem 1.  If (S,*) and ( T,*')  are

semigroups then ( S x T,*'') is a semigroup,

where *'' is defined by s1,t1*'' s2,t2=(s1*s1 ,

t1*' t2 ).

 

 

 

 ¡ß An equivalence relation R on the semigroup

(S,*) is called a congruence relation if  aRa'

and bRb'  implies (a*b)R(a'*b' ).

 

 

 

Example.   Let A ={0,1} . Consider the semigroup (A*, . ) :

¥áR¥â  iff ¥á and ¥â have the same number of

1's (¥á,¥â¡ôA*)

¥áR¥á  for any ¥á¡ôA*, if ¥áR¥â then ¥âR¥á

¥áR¥â and ¥âR¥ã, then ¥áR¥ã. Hence R is an

equivalence relation

¥áR¥á' and ¥âR¥â'  then (¥á,¥â)R(¥á',¥â' )

Hence R is a congruence relation.

 

 

 

¡ßLet [a] be the equivalence class containing

a, and let S/R be the set of all equivalence

classes.

 

 

 

Theorem 2. Let R be a congruence relation on

the semigrouop (S,*) . Consider the relation

  from S/R x S/R to S/R where ([a],[b]) is

related to [a*b].  Then we have

   (a) is a function from

      .

   (b) (S/R,) is a semigroup.

 

 

Proof. (a) Suppose ([a],[b]) = ([a'],[b']) ,

then and  aRa' and bRb'  so a*bRa'*b' , thus

([a],[b]) = ([a'],[b']) ; that is,   is a

function .

(b)  [a] ([b] [c]) = [a]  [b*c ]

   = [a*(b*c) ] = [(a*b)*c ]

   = [a*b] [c] = ([a] [b]) [c]

 

 

¡ß S/R is called the quotient semigroup or

factor semigroup.

 

 Example.  S=(A*, . ) , A = {0, 1},

then (S/R,¢Á ) is a monoid where

[¥á]¢Á[¥â]=[¥á.¥â].

 

 

 

 

Theorem 3. Let R be a congruence relation on

a semigroup (S,*), and (S/R, )  let be the

corresponding quotient semigroup, Then the

function fR:S¡æS/R defined by fR(a)= [a] is

an onto homomorphism .

 

 

Proof. If [a]¡ôS/R then fR(a)= [a] so fR is

onto. Let a,b¡ôS, then

  fR(a*b)= [a*b]=[a] [b]=fR(a)fR(b)

 

 

¡ß  fR : S ¡æ S/R  is called

    the natural homomorphism.

 

 

 

Theorem 4. Let f : S¡æT be a homomophism of

the semigroup (S,*) onto the semigroup . Let

R be a relation on S defined by aRb iff f(a) =

f(b) a,b¡ôS.

Then (a) R is a congruence relation;

(b) (T,*')  and the quotient semigroup

    (S/R, ) are isomorphic .

 

Proof. (a) It is easy to show that R is an

equivalence relation. Suppose aRa' and bRb'.

Then f(a) = f(a') and f(b) = f(b')

f(a) *'f(b) = f(a') *'f(b')

f(a*b) = f(a'*b') , hence a*bRa' *b'

(b) Define : S/R ¡æT as follows

([a]) = f([a])  for each  [a] in S/R.

Suppose [a]=[a'] then aRa' so f(a) = f(a') ,

hence is a function.

Suppose that ([a]) = ([a']) then f(a) =

f(a'),  so aRa' ¢¡ [a]=[a'], hence is

one-to-one.

Suppose b¡ôT, then f(a) = b   a¡ôT.

then ([a]) = f(a) = b , hence  is onto.

Finally,

  ([a][b])=([a*b]) = f(a*b) =f(a) *'f(b)

                  = ([a]) *' ([a])

( °fR)(a) = (fR(a)) = [(a)]= f(a)

 

 

(4)  Groups

 

¡ßA group is a set G together with a binary

operation * on such that

1.(a*b)*c  a* (b*c)  for a,b,c ¡ôG;

2. there is unique element e in G such that

a*e = e*a  = a  for a ¡ôG;

3. For every a ¡ôG  there is a' ¡ôG

(inverse of a) such that a*a' = a'*a  = e.

 

¡ßA group G is said to be abelian if a*b =

b*a for all a,b ¡ôG.

 

 

 

Theorem 1. Let G be a group. Each

element a ¡ôG has only one inverse in G.

 

 

Proof. Let a and a' be inverse of a.

Then a'(aa'') = a'e=a'

a'(aa'') =ea'=a''  Hence a'=a''.

Q.E.D.

 

¡ß We denote the inverse of a by a-1.

 

 

 

Theorem 2. Let G be a group and a,b,c¡ôG .

Then

   (a) ab = ac ¢¡ b = c;

   (b) ba = ca ¢¡ b = c.

 

 

 

 

 

Theorem 3. Let G be a group and a,b¡ôG.

  Then

   (a) (a-1)-1 = a ;

   (b) (ab)-1= b -1 a -1.

 

 

 

 

 

Theorem 4. Let G be a group and  a,b¡ôG .

Then

   (a) The equation ax = b has a unique

        solution in G.

   (b) The equation ya = b has a unique

        solution in G.

 

 

Proof. (a) x = a -1b is a solution since a(a -1b)= (aa-1)b = eb = b.

Suppose x1 and x2  are two solution of ax = b.

Then ax1 = b  and ax2 = b Hence ax1 = ax2 ¢¡ x1 = x2 .

 

 

¹®Á¦ 1.    À§ Á¤¸® 4ÀÇ (b)¸¦ Áõ¸íÇϽÿÀ.

 

 

 

¡ß If a group G  is finite, binary operation * can

be given by a table.

- from Theorem 4, each element b  must

appear exactly once in each row and column of

the table.

 

¡ß If G   is a group that has a finite number of

elements, we say that G  is a finite group and

order of G is |G|.

 

The following is the multiplication table for

groups of orders 1, 2, 3 .

 

 

 

 

- The groups of orders 1, 2 and 3 are also

abelian and that there is just one group

of each order for a fixed labeling of the

elements .

 

 

¡ß Let H be a subset of a group G  such that

(a) e¡ôH

(b) if a,b¡ôH then ab¡ôH

(c) if a¡ôH then a-1¡ôH

then H is called a subgroup of G.

 

 

 

Theorem 5. Let (G,*) and (G',*')  be two

groups, and let f:G¡æG' be a homomorphism

from G to G'.  The we have

 

(a) If e¡ôG  and e'¡ôG'  are identities then

   f(e)=e'.

(b) If a¡ôG, then f(a-1)=(f(a))-1.

(c) If H is a subgroup of  G,  then

 f(H) ={f(h) | h¡ôH} is a subgroup of G'.

 

 

Proof. Let x=f(e). Then

x*x'=f(e)*'f(e)=f(e*e)=f(e)=x so x*'x=x

multiply both sides by x-1

x*'x*'x-1 = x*'x-1¢¡x*e'=e'¢¡x=e' so  f(e)=e'

f(a-1*a) =f(a-1) *'f(a) =f(e)=e'

Hence f(a-1) =(f(a)) -1.

Q.E.D.

 

 

 

¹®Á¦ 2.   À§ Á¤¸® 5ÀÇ  (b), (c)¸¦ Áõ¸íÇϽÿÀ.

 

 

 

(5) Products and Quotients of     Groups

 

 

 

Theorem 1. If G1 and G2 are groups, then

G=G1xG2  is a group with operation defined

by (a1,b1)(a2,b2) = (a1a2 , b2b1).

 

 

 

 

 

Theorem 2. Let R be a congruence relation on

the group (G,*). Then the semigroup (G/R,)

is a group, where the operation is defined

on G/R  by [a] [a]=[a*b].

 

 

Proof. Since a group is a monoid G/R   is a

monoid. Let [a]¡ôG/R, then [a-1]¡ôG/R and

    [a][a-1]=[a*a-1]=[e].

So [a]-1=[a-1] hence (G/R,)  is a group.

 Q.E.D.

 

 

Corollary 1.

(a) If R is a congruence relation on a group ,

then the function fR:G¡æG/R given by fR(a)=

[a] is a group homomorphism.

(b) If f:G¡æG' is a homomophism from the

group (G,*) onto the group (G',*'), and R is

a relation defined on G by aRb iff f(a)=f(b) ,

a,b¡ôG; then we have

(1) R is a congruence relation;

(2) The function :G/R¡æG' , given by

([a])=f(a) is an isomorphism from the group

(G/R,) onto the group (G',*').

 

 

 

 

 

  DiscreteÇÑ ±¸Á¶¸¦ ÀÌÇØÇϱâ À§ÇÏ¿© ÇÊ¿äÇÑ ¿©·¯

¼öÇÐ ÀÌ·Ð Áß¿¡¼­ ¸ÕÀú ±âº»ÀûÀÎ semigroup °ú

groupÀÇ °³³äÀ» ¾Ë¾Æº¸°í computer À̷п¡

È°¿ëÇÏ´Â ¹æ¹ý¿¡ °üÇÏ¿© ÇнÀÇϵµ·Ï ÇÑ´Ù. 

 

 

 

 

 

 

 

 

 

 

 

 

 Á¦ 11 Àå  Four Color Problem and Knot Theory

 

    2. Languages and Finite State Machines

    2. Languages and Finite State Machines

 

 ¾ð¾î¿Í ¹®¹ýÀÇ °ü°è´Â ¹«¾ùÀΰ¡ ?  ¶Ç È¿À²ÀûÀÎ ¹®¹ýÀÌ °®Ãß¾î¾ßÇÒ ¼ºÁúÀº ¹«¾ùÀΰ¡ »ý°¢ÇÏ¿© º¸½Ã¿À.

 

 

 DiscreteÇÑ ±¸Á¶¸¦ ÀÌÇØÇϱâ À§ÇÏ¿© ÇÊ¿äÇÑ ¿©·¯

¼öÇÐ ÀÌ·Ð Áß¿¡¼­ formal language¿¡ °üÇÑ ÇнÀÀ¸·Î

¸ÕÀú »õ·Î¿î ¼öÇÐÀû ±¸Á¶ÀÎ phrase structure

grammer¿Í À¯¿ëÇÑ formal language¸¦ ¸¸µé±â À§ÇÑ

´Ü¼øÇÑ ¹æ¹ý¿¡ °üÇÏ¿© ÇнÀÇϵµ·Ï ÇÑ´Ù.

 

 

 

    Languages and Finite State Machines

 

 

DiscreteÇÑ ±¸Á¶¸¦ ÀÌÇØÇϱâ À§ÇÏ¿© ÇÊ¿äÇÑ ¿©·¯

¼öÇÐ ÀÌ·Ð Áß¿¡¼­ formal language¿¡ °üÇÑ ÇнÀÀ¸·Î

¸ÕÀú »õ·Î¿î ¼öÇÐÀû ±¸Á¶ÀÎ phrase structure

grammer¿Í À¯¿ëÇÑ formal language¸¦ ¸¸µé±â À§ÇÑ

´Ü¼øÇÑ ¹æ¹ý¿¡ °üÇÏ¿© ÇнÀÇϵµ·Ï ÇÑ´Ù.

 

´ÙÀ½ÀÇ °­ÀÇ ³»¿ëÀº B. Kolman, R.C. Bussy & S.

RossÀÇ Àú¼­ÀÎ

Discrete Mathematical Structures,

Prentice Hall Inc., 1996.

ÀÇ 10ÀåÀÇ ³»¿ëÀ» Âü°íÇÏ¿© ÇнÀÇϱ⠹ٶø´Ï´Ù.

 

 

(1) Languages

 

Refer the pp. 368-377 of the book :

 

B. Kolman, R.C. Bussy & S. Ross,

Discrete Mathematical Structures,

Prentice Hall Inc., 1996.

 

(2) Representation of Languages     and Grammers

 

Refer the pp. 378-390 of the book :

 

B. Kolman, R.C. Bussy & S. Ross,

Discrete Mathematical Structures,

Prentice Hall Inc., 1996.

 

 

 

(3) Finite state machine

 

¡ß Finite state machine

-S : state set

-I : input set

-F : set of state transition function fx: S¡æS for each x¡ôI

 

¡ß We may define F :S x I ¡æS  given by

    F(Si,x)=Fx(Si).

¡ß We can define a relation RM on S such that

SiRMSj  if there is an input x so that  fx(Si)=Sj

 

¡ßMoore machine or recognition machine

M=(S,I,F,s0,T) where S0¡ôS is the starting state

and T¡öS is the set of acceptance states.

 

¡ß Let M=(S,I,F) be a finite state machine, and R

is an equivalence relation on S.

 

R  is a machine congruence on M  if for any

s,t ¡ô S, sRt  implies that fx(s) R fx(t) for all x¡ôI.

 

¡ß Let R be a machine congruence on M=(S,I,F)  

and let =S/R be the partition of S corresponding

to R. Define x([S])=f ([S]), then = (,I,) is

a finite state machine called the quotient of

corresponding to R .

 

¡ß If M=(S,I,F,s0,T)  is a Moore machine and R is

a machine congruence on M then we may let

   = {[t] | t¡ôT}.

 

=(,I,,) is called the quotient Moore machine

of M.

 

 

(4) Semigroups, Machines and     Languages

 

¡ß  Let M=(S,I,F)  S= {s0,s1,...,sn} ,

    F={fx|x¡ô I}.

 

- I* is a monoid with catenation as its binary

operation and identity e = ¡ü(empty string).

- let S3  be the set of all functions from S to S3,

  then is a monoid with composition as its binary

  operation, and identity of is the function I3

  defined by I3(s )= s  for all s¡ô S.

 

- if w=x1 , x2 ,x3 , ... , xn ¡ô I* .

  We let  fw (state transition function corresponding to w) .

  

 

Theorem 1. Define a function T:I*¡æS3  as

T(w), then

  (a) if w1 , w2 ¡ô I*  then

     T(w1 .w2 )=   T(w2)=T(w1).

  (b) if M=T(I*) then M is a submonoid of S3.

 

     T is a homomorphism from I* to S3.

 

 

 

¡ß For a Moore machine M=(S,I,F,s0,T),

- define L(M)  to be the set of all w ¡ô I* such

  that fw(s0) ¡ô T.

- L(M) is called the language of the machine M.

 

 

(5) Machine and Regular languages

 

 

 

Theorem 1. Let I be a set and L¡öI*.

L is a type 3 language iff L=L(M) for some

Moore machine M.

 

 

 

 

 

Corollary 1. L=L(M) for some Moore machine

M iff L is a regular set.

 

 

 

¡ß Construction of the type 3 grammar for a given

Moore machine M=(S,I,F,S0,T),  G=(V,I,s0,)

where V = I¡ýS;

   write si xsj   if fx(si)=sj ,  and

   write si x    if fx(si)¡ôT.

 

Example 2. Consider the machine of Example 1. Here S ={s0,s1,s2,s3} and T={s2,s3}. We use the method above to compute an equivalent quotient machine. First ,P0={{s0,s1},{s2,s3}}. We must decompose this partition in order to find P1. Consider first the set {s0,s1}.Input 0 takes each of these states into {s0,s1}. Input 1 takes both s0 and s1 into {s2,s3}. Thus the equivalence class {s0,s1}dose not decompose in passing to P1. We also see that input 0 takes both s2 and s3 into {s2,s3} . and input 1 takes both s2 and s3 into {s2,s3} . Again, the equivalence class {s2,s3} dose not decompose in passing to P1. This means that P1=P0, so P0 corresponds to the congruence R. We found this result directly in Example1. 

 

 

          

 

 

 

Example 3. Let M be the Moore machine shown in Figure 10.54. Find the relation R and drow the digraph of corresponding quotient machine .

 

 

Solution : The partition P0 = {T,} = {{s0,s5} ,{s1,s2,s3,s4} }.Consider first the set {s0,s5}. Input 0 carries both s0 and s5 into T, and input 1 carries both into . Thus {s0,s5} does not decompose further in passing to P1. Next consider the set ={ s1,s2,s3,s4} . State s1 is carried to by input 0 and to T by class of s¡é in P¡é will be {s1,s4} . Since states s2 and s3 are carried into by input 0 and 1, they will also form an equivalence class in P1,Thsu has decomposed into the subsets {s1,s4} and {s2,s3} in passing to P1 and P1={ {s0,s5} ,{s1,s4} ,{s2,s3}}.

    

 

(6) Simplification of Machines

 

Let M be a Moore machine.

- for any s,t¡ô S and w¡ô I* we say that  s and  t

are w-compatible if fw(s) and fw(t) both belong to

T or neither does.

- define a relation R  on S such that sRt iff  s and

t are w-compatible for all w¡ô I* .

 

 

Theorem 1.

  (a) R is an equivalence relation on S;

  (b) R is a machine congruence.

 

 

 

 

Theorem 2. Let M be a Moore machine and

let R be a machine congruence. If is the

corresponding quotient machine.

  Then L()=L(M).

 

 

 

 

¡ß Define Rk such that  sRkt  iff s and t are

w-compatible for all w¡ô I*  with l(w) ¡Âk.

 

 

 

Theorem 4. (a) S/R0x={T,T'}

(b) let k be a nonnegative integer and s,t ¡ô S,

then  

     s Rk+! t  iff  (1) s Rk t ;

                      (2) fx(s) Rk fx(s) for all x¡ô I.

 

 

 

 

Theorem 5. If Rk=Rk+1 then  Rk=R.

 

 

 

* Simplification Procedure :

(¥¡) Start with partition P0={T,T'}  of S.

(¥¢) Construct P1 ,P2 ...corresponding to R1 ,R2 ..

(¥£) Whenever Pk= Pk+1 , then stop.

(¥¤) The resulting quotient machine is equivalent

to the given Moore machine and has the minimum

number of states.

 

 

 

 

 

 DiscreteÇÑ ±¸Á¶¸¦ ÀÌÇØÇϱâ À§ÇÏ¿© ÇÊ¿äÇÑ ¿©·¯

¼öÇÐ ÀÌ·Ð Áß¿¡¼­ formal language¿¡ °üÇÑ ÇнÀÀ¸·Î

¸ÕÀú »õ·Î¿î ¼öÇÐÀû ±¸Á¶ÀÎ phrase structure

grammer¿Í À¯¿ëÇÑ formal language¸¦ ¸¸µé±â À§ÇÑ

´Ü¼øÇÑ ¹æ¹ý¿¡ °üÇÏ¿© ÇнÀÇϵµ·Ï ÇÑ´Ù.