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Another Approach to Proof:
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Abstract: In the first part of the paper we will explore the use
of arguments from physics in mathematical proof and give some
reasons why this approach might be worthwhile. In the second
part we will relate this idea to Freudenthal’s concept of local
organization. The third part of the paper will present the results
of an empirical study conducted in Canada on the classroom use
of arguments from physics in mathematical proof.

Kurzreferat: Im ersten Teil diskutieren wir den Gebrauch
physikalischer Argumente in mathematischen Beweisen und
begründen, warum dieser Zugang im Unterricht sinnvoll sein
kann. Im zweiten Teil stellen wir eine Verbindung zu
Freudenthals Begriff des lokalen Ordnens her. Der dritte Teil
enthält Ergebnisse eines in Canada durchgeführten
Unterrichtsversuchs zur Anwendung physikalischer Argumente
bei mathematischen Beweisen.
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An old and new approach to the teaching of proof
Mathematicians often use arguments from physics in
mathematical proofs. Some examples, such as the
Dirichlet principle in the calculus of variations or Archi-
medes’ use of the law of the lever for determining the
volumes of solids, have become famous, and have in fact
been regarded by the best mathematicians as elegant
proofs, if not necessarily rigorous. It is only natural, then,
that several authors, notably Polya and Winter (1978),
have proposed that arguments from physics could and
should be used in teaching school mathematics. Besides
the publications of Polya (1981) and Winter (1978) there
are a number of other papers and booklets with examples
as Tokieda (1998) and Uspenskii (1961). Unfortunately,
however, this approach to classroom teaching has not
been sufficiently explored.

The application of physics under discussion here goes
well beyond the simple physical representation of mathe-
matical concepts, which of course has long proven its
own usefulness in teaching. What is being explored here
is the classroom use of proofs in which a principle of
physics, such as the uniqueness of the centre of gravity,
plays an integral role in a proof by being treated as if it
were an axiom or a theorem of mathematics. This appli-
cation of physics is also entirely distinct from expe-
rimental mathematics, which purports to employ empiri-
cal methods to draw valid general mathematical conclu-
sions from the exploration of a large number of instances.

Let us look at a typical example. It is a well-known
theorem of elementary geometry (the so-called Varignon
theorem) that, given an arbitrary quadrangle ABCD, the
midpoints of its sides W, X, Y, Z form a parallelogram
(see figure 3 below). A purely geometrical proof of this
result would divide the quadrangle into two triangles and
apply a similarity argument.

An argument from mechanics, on the other hand, would
consider points A, B, C, D as four weights, each of unit
mass, connected by rigid but weightless rods. Of course
such a system, with a total mass of 4, has a centre of
gravity, and it is this which we need to determine. The
two sub-systems AB and CD each have weight 2, and
their respective centres of gravity are their midpoints W
and Y. From static considerations we may replace AB and
CD by W and Y, each having mass 2. But AB and CD
make up the whole system ABCD. Its centre of gravity is
therefore the midpoint M of WY. In the same way we can
consider ABCD as made up of BC and DA. Therefore the
centre of gravity of ABCD is must also be midpoint of
XZ. Since the centre of gravity is unique, this midpoint
must be M. This means that M cuts both WY and XZ into
equal parts. Thus WXYZ, whose diagonals are WY and
XZ, is a parallelogram.

We can learn from this example that an argument from
physics may add to our intuitive understanding of the
mathematics involved. To an untutored mind it may seem
rather surprising that every quadrangle, however irregu-
lar, has a property of such high regularity. When one con-
siders the quadrangle as a four-point system of masses,
however, it is immediately clear that its centre of gravity
must also divide into equal parts the two levers that
connect the midpoints of the opposite sides.

We have said quite deliberately that this proof adds
something to our understanding of the theorem, not that it
gives the “real” or the “best” explanation of it. Certainly
the more common purely geometric proof also provides
insight. We simply want to say that the argument from
physics allows us to look at the theorem from a new and
intuitively appealing point of view.

In many cases, arguments from physics are a way for
the mathematician to produce a more elegant proof. This
is as true today as it has been in history. Frequently such a
proof may be illuminating in different ways. It may
reveal the essential features of a complex mathematical
structure, or point out more clearly the relevance of a
theorem to other areas of mathematics or to other scien-
tific disciplines. In some cases, too, using an argument
from physics may also help create a “holistic” version of
a proof, one that can be grasped in its entirety, as opposed
to a necessarily elaborate and almost inscrutable mathe-
matical argument.

Frequently, arguments from physics may help to
generalize. Following the lines of our previous physical
argument, for example, we can determine the centre of
gravity not only for systems with four masses, but also
for those with 3, 5, 6 and so forth. It is highly plausible
that in these cases, too, one would be able to translate the
respective statements about the centre of gravity  into
purely geometrical theorems.  In the case of three masses,
for example, such a theorem would say that in any
triangle the three medians intersect in a single point and
that this point of intersection divides each median in a
ratio 2 : 1 (see below).

If we look at the educational context from a broader
perspective, we can see several reasons why this
approach to the teaching of proof should be further
developed and tested. First of all, in most Western
countries there is a trend away from using proof in the
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classroom. In our view, this trend threatens to undercut
the educational value of mathematics teaching, since con-
veying to students the concept of mathematical proof is
an important component of this value. One way to
counter this unfortunate tendency is to introduce fresh
and possibly more attractive approaches to the teaching
of proof. Such new approaches, and especially the use of
arguments from physics, might well motivate teachers to
rethink their attitude to proof.

Another reason to pursue the use of arguments from
physics is that present-day mathematical practice displays
a significant emphasis on experimentation, and it is only
right that this be reflected in the classroom by a similar
emphasis on experimental mathematics. But it would be
dangerous from an educational point of view if experi-
mental mathematics were to be represented in the schools
only by “mathematics with computers”. Quite the con-
trary: under the heading of experimental mathematics, the
curriculum should include a strong component devoted to
the classical applications of mathematics to the physical
world. In cultivating this type of mathematics, students
and teachers should be guided by the question of how
mathematics helps to explore and understand the world
around us.  With such an approach, the teaching of proof
would be embedded in building models and in inventing
arguments to answer the question “why”. Both of these
activities force one to think about the derivation of
consequences from assumptions, or, in other words, about
proof. Working in this way on the borderline between
mathematics and physics, it would also become clear that
we can not only apply mathematics to physics, but also
very often use statements from physics for the derivation
of mathematical theorems.

For many reasons physics, the discipline nearest to
mathematics, has become less and less a required subject
in our schools. To maintain meaningful and interdis-
ciplinary mathematics teaching it may therefore become
necessary to include some elementary physics in the
mathematics curriculum. Of course this will have to be
done carefully, bearing in mind the value of the manifold
applications from the social sciences which have entered
the curriculum in the last few decades. Nevertheless, we
think that some adjustments to the curriculum will be
necessary if we are to convey to students a more valid
and balanced view of mathematics.

The educational evolution of proof
In our view, introducing concepts and arguments from
physics into the teaching of geometry could significantly
contribute to the development of students’ understanding
of proof. One of the most difficult problems faced by
educators when they start doing proofs with their students
is the systematic nature of Euclidean geometry. Today, of
course, nobody would teach Euclidean geometry in an
axiomatic way. Yet a closer analysis of geometry text-
books and the practice of teaching would show that
Euclid’s system is always present in the background. It
determines to a large extent the sequence of theorems and
the arguments students are allowed to use in a proof.
Though they bring only a small part of it to the attention
of their students, teachers nevertheless have a mental
picture of a “grand theory”. For the teacher, the main

function of a proof is to incorporate a new theorem into
this grand theory. The students know little or nothing of
this grand theory, however, and so they must necessarily
have a completely different image of the function of
proof.

As a consequence of this deeply rooted problem, geo-
metry is bound to appear arbitrary and dogmatic to many
students. Why are they asked to prove the angle sum
theorem, but are allowed to use facts about angles formed
by parallel lines intersected by a third line, rather than
vice versa? Most educators are aware of this fundamental
difficulty, and it would seem to be one of the main
reasons why in the last twenty years teachers have limited
the role of proof in their teaching more and more. The
justification for this reduced role offered by many educa-
tors is the mantra that the important thing is not to teach
proof, but rather to develop a “culture of reasoning” in
the classroom.

As is frequently the case with such “soft” slogans, this
one is true and wrong at the same time. On the one hand
it does take into account the undeniable fact that we can-
not really teach systematic geometry in our schools. On
the other hand, however, it ignores the reality that one
cannot really discuss proof without discussing theories.
The very notion of proof is tied to the notion of theory
(and here we use “theory,” of course, in the sense of
“systematic structure”). Every proof is based upon an
understanding, explicit or implicit, of what can be taken
as given and what kinds of argument are acceptable, and
these questions can be answered only in the context of a
theory. Seen this way, it is clear that proof necessarily
involves a formal element, and that providing a proof
involves much more than setting out some everyday
argument. Even more significant in the context of our
discussion, perhaps, is that one cannot really understand
the importance of proof or its educational value unless
one understands that it is intimately tied to the idea of
theory.

 Most people would accept without elaboration the
statement that we are having bad weather because of a
drop in atmospheric pressure. This is a typical everyday
explanation, and in everyday situations it might be
sufficient. The difference between educated and uneduc-
ated people, however, is that the former, though they too
would accept this explanation, are very conscious of the
fact that it would need considerable elaboration, involv-
ing reference to a number of theories and laws, if we
wanted to understand fully why it is raining today. What
we are aiming for in the teaching of proof is precisely to
develop this sense for the qualitative difference between
scientific explanations and everyday arguments.

As we develop the notion of proof in the classroom,
then, we must also develop the notion of a theory. In this
connection we find it very useful to consider Freuden-
thal’s concept of local organisation in geometry. He states
that

 “... in introductory geometry the student can be lead to learn to
organize shapes and phenomena in space by means of geome-
trical concepts and their properties. At a higher level he should
organize these concepts and their properties by means of logical
relations. Above this level this relational system can become a
subject of investigation” (Freudenthal 1973, 458).
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What Freudenthal had in mind is shown by his example
of the theorem on the perpendicular bisectors of a tri-
angle. It is not necessary, in his view, to give a complete
proof that calls upon the entire (implicit) background of
the Euclidean system, starting with the equidistance
property of perpendicular bisectors and then progressing
to the fact that they meet in one and the same point.
Rather, one can concentrate on certain aspects which, for
one reason or another, are of interest in the specific
teaching situation, while taking other aspects for granted.
Thus, local organization aims at the exploration of a
certain configuration and not at establishing a deductive
truth within a larger system. Of course, the things taken
for granted in the “local organization” are consistent with
the truths of the larger system and could be proved in it.
But since the students do not have an idea of the larger
system, we have to take this “local organization” itself as
the theory with which we are dealing.

Thus, in line with Freudenthal’s concept of “local orga-
nisation” we would propose a distinction between “large”
and “small” theories. Instead of building a large theory
(namely, Euclidean geometry) in the course of the curri-
culum, it seems to be more appropriate to work in several
small theories around stimulating applications. The phys-
ical mechanisms described and analysed in elementary
statics could provide fruitful examples of such small
theories.

What does it mean to work in a “small theory”? We are
well aware that students will always have a somewhat
fragmented knowledge of geometry, because it has to be
developed step by step and cannot be conveyed to them
all at once by a simple verbal explanation. The idea of a
“small theory” recognises that the same is true of their
understanding of proof. As educators, we have to accept
the fact that in the minds of the students there is no fixed
(axiomatic) basis of argumentation, and that we cannot
expect them to believe that there is a procedure called
proof, superior to their intuition, which establishes the
truth of a theorem.

But in that case what would a proof accomplish for the
students? The answer is that a proof exhibits relations
and dependencies between different facts or statements.
We will explain this by a classic example. The angles in a
circle theorem can be proved by recourse to properties of
isosceles triangles. In the context of Euclidean geometry
as a system, this means that we can add the angles in a
circle theorem to the bag of true (proved) theorems, since
we have already proved that the base angles in isosceles
triangles are equal, and this, in turn, can be derived from
another theorem, and so on.

In our teaching, for the reasons we have discussed, we
cannot rely on such a long chain of deduction, and thus
the proof must be made to mean something different to
the students. They are working in the context of a small
thematic unit on angles inscribed in circles, a context in
which it is natural to consider that isosceles triangles can
be inscribed in such circles. By a proof the students might
understand establishing a logical connection between  the
invariance of the inscribed angles  and the properties of
isosceles triangles. These properties, then, “explain” the
invariance of inscribed angles.

 In regard to truth, of course, the proof wouldn’t change

the situation, since both facts, the invariance of the in-
scribed angles and the equality of the base angles in iso-
sceles triangles, are equally plausible to the students.
Nevertheless, the proof would enhance the certainty of
the inscribed angle theorem in the sense that a counter-
example to it would also be a counterexample to the
equality of the base angles in isosceles triangles.

This also sheds some light on the relationship between
proof and measurement (see Hanna & Jahnke, 1996).
Students are often required to measure the angles of
triangles and work out their sum. After having found that
they always get around 180°, they are told that this has to
be proved mathematically in order to show that it is true
“for all triangles”. This pedagogically well-meant step is
problematic, since it implies that we can arrive at a law
valid for the empirical triangles on the paper in front of us
by a purely deductive procedure, without any measure-
ment. The fact is, however, that when we are dealing with
empirical triangles we must insist that the angle sum
property is true only because we have measured it, and
not because we have proved it mathematically.

This having been said, it is also true that a mathematic-
al proof of the angle sum theorem will enhance its em-
pirical certainty, since it connects this theorem with some
other statement (for example, a statement on angles at
parallels cut by a straight line) which we can also estab-
lish by measurement. Taking this example, the statement
on angles at parallel lines functions as an independent test
of the angle sum theorem in triangles. If there is a
counterexample to one of the theorems it will be relevant
to both.

For the students, the epistemological situation is similar
to that of a physicist. No physicist will believe in a state-
ment simply because it has been proved mathematically.
He will test it by measuring, of course. Mathematical
proofs are essential in physics nevertheless, because they
connect the empirical statements. A theory of physics is a
network of measurements and laws connected by proof.
The theory as a whole is tested by the system of all
measurements taken as a whole, and therefore it has a
status more certain than a single measurement could
have, irrespective of how often it might have been per-
formed. In educational terms, one could say that this
method teaches geometry like a theory of physics.

What does the idea of local organization mean for the
approach of using arguments from physics in mathema-
tical proof? First of all, since students usually do not have
the necessary background in physics, we have to start
with building up such a background. This means, for
example, that we introduce a unit on statics into geometry
teaching.  This would be a “small theory” of a mixed
nature, since it comprise statements and principles  from
both geometry and  physics. (In the 18th century, in fact,
people spoke of  “mixed mathematics” in such cases.)

The facts of statics which would be taken for granted in
this theory are empirical laws about the equilibrium of 1-
and 2-dimensional “bodies”. As we have said, the empir-
ical character of these laws does no harm to the idea of a
mathematical proof, because it is the function of such a
proof to establish theoretical connections among state-
ments, whether the statements themselves are empirical
or theoretical.
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In such a unit, geometrical facts would be derived from
principles of statics. This is what we call “using argu-
ments from physics within mathematical proof”. The
students would learn that the physical idea of equilibrium
has a purely geometrical aspect. Theorems which they
had proved earlier within a geometrical setting would get
a new meaning by being considered as facts within phys-
ics. In this way, by becoming conscious that geometrical
theorems can be considered in different contexts and
proved in different ways, students might come to reflect
in a new and more adequate way on the notion of proof
itself.

It can be hoped, too, that building up a small theory of
mixed mathematics would have a useful side-effect. Stud-
ents involved in such a process of theory building might
more easily grasp the idea that theories are consciously
constructed with definite aims in mind. In our case, of
course, the aim is to foster an understanding of the
equilibrium of physical bodies.

The teaching unit
The objective of the unit was to enable the students to use
the lever principle and the concept of the centre of gravity
to prove that the medians of a triangle are concurrent at a
point of trisection and to prove the Varignon theorem.
This unit, which consisted of two 75-minute classroom
periods, was part of a larger section on deductive
geometry. The concept of centre of gravity was intro-
duced along with three postulates:

Postulate 1: The lever principle
Postulate 2: Any system of masses has only one centre of
gravity
Postulate 3: In any system of masses, if any two in-
dividual masses are replaced by a single mass equal to the
sum of the two masses positioned at the centre of gravity
of the two masses, then the location of the centre of
gravity of the total system of masses remains unchanged.

The two 75 minute classroom periods introduced the
three postulates mentioned above. At the commencement
of the lesson, students were told briefly the purpose of the
lesson, namely to learn some preliminary information on
levers which they would need to know. As show in Figure
1, the teacher demonstrated the balancing of various pairs
of masses on a ruler supported at one point, and asked
questions about the location or the weight of the masses.

The teacher also explained the relationship between the
product of mass and distance from the fulcrum on each
side of the fulcrum and indicated that this relationship is
called the lever principle, and that the location of the
balancing point or the fulcrum is also referred to as the

centre of gravity. The students completed worksheets
with diagrams of balanced masses, such as the one shown
in Figure 1. The students also completed a table that
showed that the ratio of masses was inversely proportion-
al to the ratio of distances. In addition, they were asked
questions such as the following:

 In a system of a 200 g mass and a 300 g mass the 300 g mass is
moved 4 cm closer to the centre of gravity, how must the 200 g
mass be moved to maintain the same centre of gravity point?
Explain using the lever principle.

Medians of a triangle
Part of the teaching unit was also devoted to the medians
of a triangle. The objectives were 1) to have the students
discover that the medians of a triangle intersect at a single
point (the centre of gravity of the triangle when three
equal masses are placed at its vertices) and that this point
is located on a median, two-thirds of the way from each
vertex, and 2) to have the students provide a proof or
explanation why this must be so, using the three
postulates related to the centre of gravity of a system.

The students worked in independent groups of three
with a minimum of guidance from the teacher. Each
group was provided with a clear acrylic triangle, a
washable marker, a ruler and a number of 200g masses
(see Figure 2). The triangles were of varying shapes and
sizes, including acute, obtuse and right triangles. Each
triangle had six string loops taped to the corners of the
triangles and at the midpoints of the sides. The students
were asked to find the balancing point with the masses
suspended from the vertices of the triangle, and then to
verify that this point remained unchanged when two
masses were relocated from their respective vertices to
the midpoint of the side joining the vertices where the
masses came from.

The teacher gave some suggestions about balancing the
triangles on the retort rod (Figure 2) and answered some
of the questions that students asked as their work progres-
sed. In the course of doing the experiment and answering
the related questions in
the worksheets, the
students would have ob-
served and been made
aware of postulates 2
and 3 above.  Included
in the worksheets were
questions requiring the
students to explain or
prove the properties of
the medians of a triangle
using these postulates.
   At the end of the
period, the students
were asked to complete
the worksheets and hand
them in the following
day. They were asked to
prove that the three
medians of a triangle are
concurrent (intersect in a single point) and that the point
of intersection divides each median in a ratio 2:1, once

Figure 2: Triangle on a retort rod

Figure 1: Balancing masses
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using traditional geometrical arguments and then using
arguments from physics.

For the proof using arguments from physics they were
told that “given that D, E and F are the midpoints of their
respective sides of triangle ABC, prove the triangle medi-
ans theorem using physical reasoning by applying the
lever principle (LP), Substitution Principle (SP) and
existence and uniqueness of the centre of gravity (UCG).
Hint: locate the centre of mass on each of the three
medians.”

The Varignon Theorem
The worksheet restated that two systems of masses are
considered equivalent if both systems have the same
centre of gravity and one system can be obtained from the
other by relocating the individual masses while maintain-
ing the centre of gravity. Further it reminded the students
that Postulate 3 describes how one system of masses can
be changed to another equivalent system. An example of
two equivalent systems is a triangle with equal masses
located at its vertices and the same triangle with one mass
at a vertex and the other two at the midpoint of the op-
posite side of this vertex.

The students were given the following: Let W, X, Y
and Z be the midpoints of the sides of any quadrilateral

ABCD (Figure 3.), prove that the WXYZ is a parallelo-
gram. They were also told to assume that equal masses
are placed at the corners of the quadrilateral and use an
argument from physics to prove (explain) by relocating
the masses to make equivalent systems that the centre of
mass of the quadrilateral is at the midpoint of XZ .

Student performance

The medians of a triangle
As mentioned above, the students were asked to complete
two proofs of the theorem that the medians of a triangle
are concurrent at a point of trisection. One proof was to
be based upon arguments from physics, while the other
was to be a traditional geometric proof. These proofs
were assigned as homework, and were handed in with the

other worksheets before the questionnaire was ad-
ministered and the interviews carried out. The assigned
proofs were phrased as follows:

Geometry 1: Using geometrical arguments, given Δ ABC
with medians BE and CF intersecting at G.

a) Prove EF:CB = 1:2
     b) Prove EF || CB
     c) Prove Δ EFG ~ Δ BCG
     d) Prove EG:GB = FG:GC = 1:2

The worksheet indicated that for the geometric proof the
students were to “use the theorems developed in class
(chapter 5 of your textbook) to prove the medians of tri-
angles theorem.

Physics 2a: Using arguments from physics write out a
complete proof, applying the above postulates, explaining
how experiment II proves the medians of a triangle all
intersect at one point.
Physics 2b: What additional property does experiment II
prove concerning the intersection of the medians of a
triangle? Give reasons for your answer

The students’ performance on these questions was
rated by the classroom teacher in three categories: Cor-
rect response, partially correct response (including in-
complete responses with correct start or correct use of
arguments but still unfinished responses) and incorrect
response (including responses with minor correct parts
but mostly wrong).

Table 1. Assessment of students’ proofs that the medians
of a triangle are concurrent using physical or geome-
trical arguments (N=25)

Question Correct Partial Incorrect

Physics 2a 12 9 4

Physics 2b 2 8 15

Geometry 1 23 1 1

As shown in Table 1, the proof using arguments from
physics that the medians of a triangle are concurrent
(Physics 2a) was done correctly by 12 students and
partially correctly by nine; four students produced proofs
judged to be incorrect. Only two students provided cor-
rect answers to Physics 2b, in which they were to identify
that the medians meet at the point of their trisection, with
only eight providing partially correct ones.

This result stands in contrast to a much higher rate of
success on the geometric proof (question Geometry 1),
where all but two students produced a correct proof. One
should note, however, that this question was accompanied
by significant hints to the students on how to proceed, in
the form of two diagrams and an explicit presentation of

A

B

C

D

W

X

Y

Z

Figure 3: Quadrilateral ABCD with midpoints W, X, Y,
Z
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sub-steps (a) to (d), as shown above. No comparable
guidance was provided to the students as to how to pro-
ceed with their first assignment, the proof using prin-
ciples from physics. It also seems fair to assume that
these results reflected previous classroom work, in which
the students had become quite accustomed to the geome-
tric approach. Indeed, the participating students had al-
ready had fourteen 75-minute assignment, the proof using
principles from physics. It also seems fair to assume that
these results reflected previous classroom work, in which
the students had become quite accustomed to the geo-
metric approach. Indeed, the participating students had
already had fourteen 75-minute periods of traditional geo-
metry in their Grade 12 class before the physics unit was
introduced, and had also had some traditional geometry
(angle theorems and congruence postulates) in Grade 10.

The expectation in question Physics 2b was that the
students would realise that the additional property sought
is that the medians intersect in a ration of 1:2, a property
that had already been covered in the classroom. It was
also hoped that they would use the postulates to justify
this property, rather than simply basing it upon their
experimental observations. As a matter of fact, however,
60% of the students (15 out of 25) were unable to answer
this question correctly. Eight students were on the right
track but did not complete their proof, and only two
students successfully answered this question (see
appendix for an example of a correct response).

This disappointing outcome might well be a sign that
the students did not completely understand the difference
between (1) a proof that uses arguments from physics and
(2) an informal justification based upon the results of an
experiment. Indeed, the responses to the questionnaire
revealed nothing to show that any of the students realised
that the experiments they performed were not an integral
part of the proof from physics, while there were several
comments indicating that students did think they were.
Among them were comments such as “The argument is
convincing because you can visually see the answer;”
“Because we did it ourselves;” “The physics proof
assisted in understanding the geometric proof because
when you see something you tend more to believe it;”
and “Physics is more hands on where mathematics you
have to visualize an physics is in front of you.”

The Varignon Theorem
The students were asked to complete two proofs of the
Varignon theorem. One proof was to be based upon argu-
ments from physics, while the other was to be a tradition-
al geometric proof. Both proofs were assigned as home-
work and were phrased as follows:

Physics 4a) Prove (explain) by relocating the masses to
make equivalent systems that the centre of mass of the
quadrilateral is at the midpoint of XZ
Physics 4b) Prove that the centre of gravity is at the
midpoint of WY.
Physics 4c) What do a) and b) say about the intersection
of XZ and WY?
Physics 4d) Explain why WXYZ is a parallelogram.

Geometry 5) Without referring to concepts of physics,

prove that WXYZ is a parallelogram by proving its sides
are parallel to the diagonals of quadrilateral ABCD

6. Discuss which proof you find easier to do or under-
stand, the one in question 4 (physics) or the one in ques-
tion 5 (geometry).

Table 2. Assessment of students’ proofs of the Varignon
theorem using physical or geometrical arguments (N=25)

Question Correct Partial Incorrect
Physics 4a 23 2 --
Physics 4b 23 2 --
Physics 4c 22 -- 3
Physics 4d 21 -- 4
Geometry 5 16 5 4

Almost all the students were able to give correct answers
to the first four questions. Of the 22 students who
answered 4c correctly, 10 made the observation that XZ
and WY bisect each other, whereas the other 12 said that
XZ and WY intersected at the centre of gravity.  Though
question 4d was answered correctly by as many as 21
students, only three students were able to base their
correct answer on the observation that the diagonals of
WXYZ, XZ and WY, bisected each other; the remaining
18 students went on to give a full geometric proof.

The following are examples of correct answers:
 Physics 4a. “According to postulate 3, if the masses at

A and D are moved to Z, and the masses at B and C are
moved to X, then the system will balance. The centre of
gravity, therefore, will be the midpoint of XZ, as that is
the point where the mass x distance product will be equal
for both sides.”

Physics 4b. “Similar to part a), if the masses from A
and B are moved to W, and the masses from C and D are
moved to Y, the system will balance, meaning the centre
of gravity must be equidistant from each pair of masses,
which would be the midpoint of WY.”

In the case of question Physics 4c, where students were
asked “What do a) and b) say about the intersection of
XZ and WY?”, only 10 students stated correctly that “XZ
and WY bisect each other”, whereas 12 students gave a
partially correct answer saying that “XZ and WY intersect
at the centre of gravity” without mentioning the crucial
fact of bisection.

Of the 21 students who answered Physics 4d correctly,
only three were able to state that it is because “WY and
ZX, the diagonal of WXYZ bisect each other” and thus
base their answer on the argument from physics. As many
as 18 students saw it necessary to give a full geometric
proof, showing that since the opposite sides are equal,
ZW=YX and ZY=WX, WXYZ must be a parallelogram.

Students’ responses to questions about the two methods
of proof
 In the questionnaire mentioned earlier, the participants
were asked to respond to and comment on a range of
questions including the following:
1. Is the argument from physics convincing?
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2. Which proof, the geometric or the one based on argu-
ments from physics, was clearer?

3. Which proof was easier to remember?
4. Does everyday experience with balancing things make

the argument from physics clearer?

5. Discuss which proof you find easier to do or under-
stand in the case of the Varignon theorem, the one in
question 4 (physics, a, b, c, and d) or the one in
question 5 (geometry).

The first four questions were related to proofs that the medians of a triangle are concurrent whereas the last question was
related to the Varignon theorem. The responses and comments indicated that the idea of using arguments from physics
has a great deal of appeal for students in the case of the medians of a triangle theorem. An important specific finding of
this study is that all but two of the participants found the proof using the argument from physics convincing, as shown in
Table 2.

 1. Is the argument from physics convincing? Yes (23) No (1) ? (1)

 2. Which proof is clearer? Physics (15) Geom. (9) ? (1)

 3. Which proof is easier to remember? Physics (15) Geom. (5) ? (5)

 4. Does everyday experience with balancing help? Yes (17) No (2) ? (6)

 5. In the case of Varignon, which proof is easier? Physics (4) Geom. (14) ? (7)

Table 3. Students’ responses to four questionnaire questions (N=25)

Note:  “?” means “no response” or “ambiguous
response”

As mentioned, the students were also given space in the
questionnaire to add a few sentences of their own in
response to each question, and were also interviewed.
Their free-format responses give further insight into the
issue of “convincing”. One student remarked that “the
argument from physics actually made sense,” and another
responded that in using physics “there is a hands-on, 3-D,
example of why the argument is true.” Yet another
student remarked that “it is difficult to see how the phys-
ics argument is related to the issue at hand earlier on, but
the connection eventually becomes more evident and con-
crete than a geometric proof could ever be.”

As responses to questions 2 and 3 in Table 3 also show,
60% of the participating students judged the proof using
concepts and principles from physics to be clearer and
easier to remember than the corresponding geometric
proof. Nine of the 25 participants ranked the geometrical
proof higher in terms of clarity, and five of them thought
the geometric proof was easier to remember.

It should be pointed out that the 15 students who chose
the proof using physics as being clearer were not all the
same as the 15 who thought it easier to remember. In
other words, judging a proof to be clearer did not mean
judging it to be easier to remember. In fact, three of the
nine students who thought the geometric proof was
clearer found the physics proof to be easier to remember,
while one student who thought the physics proof was
clearer nevertheless thought the geometric proof was
easier to remember.

For some students, hands-on experience seemed to
have been the key factor in ease of retention. As one
student put it in the course of an interview, the proof with
physics was easier to remember “because you are actual-
ly doing it.” Another student gave a similar explanation
for the same conclusion: “You actually did it yourself. In

math the teacher is just explaining it to you. Hands on
sticks with you more.”

Responses to the case of the Varignon theorem,
question 5 in Table 3, indicated that as many as 14
students thought that the geometric proof was the easier
one, while 4 students found the physics proof easier and 7
students did not respond.  This is somewhat surprising in
view of the students’ better performance on the proof
based on arguments from physics (see Table 2). Of the 14
students who found the geometric proof easier to do or
understand, 8 offered additional comments. Three said
that the geometrical proof was easier because of previous
experience with geometry: “it is easier because I have
more experience with it.” “ ... because it adheres more
closely with a straightforward definition of the parallelo-
gram.” “I like it better because there was less to do.”

Five students said that their lack of familiarity with
physics concepts was an impediment to proving using
arguments from physics. Typical comments were: “I find
the geometrical proof easier. It is provable geometrically,
whereas the other is too conceptual.” or “I find it easier
to understand without referring to concepts of physics. I
need to have a clear understanding of the postulates
before I can do the question. It is more difficult to visua-
lize the concepts.”

Two of these students even found the ideas from
physics somewhat cumbersome. One said:  “The geo-
metric proof is easier to understand since you don’t have
to think about centre of gravity and making sure that it is
in the right place where it balances out.” and the other: “I
like the geometric one better because it is easier for me to
visualise. I can test my answer by manipulating it on
paper. But in the physics proof, I would have to assemble
an apparatus etc. which I would not be able to get a hold
of most of the time. I also find that the geometric proof is
easier to explain.”

Of the four students who found the proof using argu-
ments from physics easier to do or understand, three gave
the following reasons:
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  “I find the proof in question 4 [using arguments from
physics] easier to understand because it is more visual
than the one in question 5[the geometric one].”

 “Both of these proofs were easy to understand.
However, I found the one in question 4 [using arguments
from physics]much easier to see, to quickly identify. The
proof in number 5 took a bit for me to see.”

 “I find the physics proof easier to understand because
we’ve seen a physical proof of the reasoning. However, I
prefer to work with the geometric one.”

Conclusions
From the students’ comments and the assessment of ques-
tions Physics 2a and 2b, then, it seems quite clear that
many students felt that the experiments were part of the
proof. These rudimentary experiments had been intro-
duced into the teaching unit to establish in the students’
minds the empirical plausibility of the physics principles
used in the proof as well as of the conclusion of that
proof. In this the experiments would seem to have been
successful. They also appear to have been successful in
conveying to the students the more general idea that
concepts and principles from physics can be used in
proving mathematical theorems.

Nevertheless, it is clear from the students’ responses
that most of them found the proof from physics to be
convincing, as well as clearer and more readily remem-
bered than the geometric proof. It is also clear that
students saw these proofs as another way of looking at
geometrical theorems. The results of this experimental
teaching unit do support the tentative conclusion that
teaching mathematical proofs using concepts and prin-
ciples of physics is a promising pedagogical approach
worthy of further exploration.

Acknowledgements
Preparation of this paper was supported in part by the
Social Sciences and Humanities Research Council of
Canada. We wish to acknowledge the cooperation of the
students and the teacher who participated in this study.

References
Freudenthal, H. (1973). Mathematics as an Educational Task.

Dordrecht: Reidel
Hanna, G. & Jahnke, H. N. (1996). Proof and proving. In:

Bishop, A.; Clements, K.; Keitel, C.; Kilpatrick, J.; Laborde,
C.: International handbook of mathematics education,
Dordrecht: Kluwer 1996, 877 - 908

Hanna, G. & Jahnke, H. N. (1999). Using arguments from
physics to promote understanding of mathematical proofs. In
O. Zaslavsky (Ed.), Proceedings of the twenty-third
conference of the international group for the psychology of
mathematics education, Vol. 3, 73-80. Haifa: Israel.

Polya, G. (1981). Mathematical discovery: On understanding,
learning and teaching problem solving (2 vols.; combined
ed.). New York: John Wiley & Sons.

Tokieda, T. F. (1998). Mechanical Ideas in Geometry. American
Mathematical Monthly 105, 697 – 703.

Uspenskii. V. A. (1961). Some Applications of Mechanics to
Mathematics. New York: Balisdell Publishing Company.

Winter, H. (1978). Geometrie vom Hebelgesetz aus -- ein
Beitrag zur Integration von Physik- und Mathematikunterricht
der Sekundarstufe I. Der Mathematikunterricht 24, 5, 88-125.

_________
Authors:
Gila Hanna, Ontario Institute for Studies in Education of
the University of Toronto, 252 Bloor Street West,
Toronto, Ontario,  M5S 1V6. (Canada)
E-mail: mailto:ghanna@oise.utoronto.ca

Hans Niels Jahnke, FB6: Mathematik und Informatik,
Universität Essen, D-45117 Essen (Germany)
E-mail: mailto:njahnke@uni-essen.de

mailto:ghanna@oise.utoronto.ca
mailto:njahnke@uni-essen.de

	An old and new approach to the teaching of proof
	The educational evolution of proof

	The teaching unit
	Medians of a triangle
	The Varignon Theorem

	Student performance
	The medians of a triangle
	Table 1. Assessment of students’ proofs that the medians of a triangle are concurrent using physical or geome˜trical arguments (N=25)
	The Varignon Theorem
	Table 2. Assessment of students’ proofs of the Varignon theorem using physical or geometrical arguments (N=25)
	Physics 4a

	Table 3. Students’ responses to four questionnaire questions (N=25)


	Conclusions
	Acknowledgements

