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The process of observing and analyzing studentsÕ behaviors is interesting
and complex but also unstable. It is unstable because it involves countless
variables, many of which are uncontrollable. Despite this, what we learn from
this process is useful, even essential, in designing and implementing mathe-
matics curricula for both students and teachers. This presentation is about
studentsÕ behaviors in relation to justi®cation and proof. Some of these be-
haviors are assumed to be due to faulty instruction in school; others seem to be
unavoidable, in the sense that they are of human developmental nature. An-
alyzed from a historical perspective of mathematical development, these stu-
dentsÕ understandings of proof can be classi®ed into three categories:
· Category 1: In this category, studentsÕ understandings of proof (viewed in re-

lation to those of their instructors) seem to parallel the Greek conception of
mathematics (viewed in relation to that of modern days).

· Category 2: In this category, studentsÕ understandings of proof are reminis-
cent of the 16±17th century conception of mathematics.

· Category 3: In this category, studentsÕ understandings of proof seem, to a
large extent, to be a result of faulty instruction in the elementary and second-
ary schools.
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In this presentation, I will focus on the ®rst two categories, the third cate-
gory is addressed in [1]. The ®ndings about studentsÕ understandings of proof,
part of which is reported here, were obtained from a sequence of six teaching
experiments with a total of 169 students (mathematics majors and engineering
majors). The data were collected from classroom observations in the form of
®eld notes and retrospective notes, clinical interviews, homeworks, and written
tests and quizzes. Some of the data came from videotaped classroom sessions
and sixty-to-ninety-minute clinical interviews with students (for more detailed
accounts, see [1]).

While the data from the experiments support the observation of students'
di�culties with proof, the historical analysis I describe here only points to a
possible parallelism between these di�culties and historical phenomena in the
development of mathematics. My research did not intend to establish and has
not established such a parallelism. The historical analysis has, however, pro-
vided me with insights as to the possible conceptual basis for students' math-
ematical behaviour.

1. Category 1: students' understanding of mathematics in relation to greek versus

modern mathematical thought

The axiomatic conception of proof is when the student understands that at
least in principle a mathematical justi®cation must have started originally from
unde®ned terms and axioms. There really are three di�erent levels of the axi-
omatic conception, which historically were developed in three consecutive
periods: Intuitive axiomatic conception, structural conception, and axiomati-
zing conception.

Intuitive axiomatic. The view of what constitutes an acceptable mathemat-
ical proof has had many turning points. Babylonian mathematics is considered
proof-free, because it does not deal with general statements, deduction, or
explanations; rather, it prescribes speci®c solutions to speci®c problems. The
axiomatic method ± that is, the notion of deductive proof from some accepted
principles ± was conceived by the Greeks. However, it is important to note that
the Greeks had one single type of mental objects in mind, namely, objects that
are idealizations of physical reality, such as a line, plane, triangle, etc. Ac-
cordingly, with the Intuitive Axiomatic conception, the student is able to
handle only axioms that correspond to her/his intuition. For example, the
statement ``One and only one line goes through two points'' is understood only
in the context of personal geometric intuition. Here the objects, which are
derived from an idealization of the physical reality, determine the set of axi-
oms. Similarly, the statement, ``For any a and b in F, a� b � b� a'' is un-
derstood only in the context of experience with real numbers. In modern
mathematics, on the other hand, the objects are determined by a set of axioms.
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This was a revolutionary way of thinking in the development of mathematics
and may shed light on some of the di�culties we observed with students.

Structural. To explain the second level, let me point to a critical distinction
between EuclidÕs Elements and HilbertÕs Grundlagen. While the Elements is
restricted to a single interpretation ± namely that its content is a presumed
description of human spatial realization ± the Grundlagen is open to di�erent
possible realizations, such as Euclidean space, the surface of a half-sphere,
ordered pairs and triples of real numbers, etc. ± including the interpretation
that the axioms are meaningless formulas. In other words, the Grundlagen
characterizes a STRUCTURE that ®ts di�erent models. This obviously is not
unique to geometry. In algebra, a group or a vector space is de®ned to be any
system of objects satisfying certain axioms that specify the structure under
consideration. Accordingly, the structural conception is the understanding that
de®nitions and theorems represent situations from di�erent realizations that
share a common structure determined by a permanent set of axioms. In this
conception, the axioms that de®ne the structure are permanent, and one studies
the structure itself, not just the axiom system. So, for example, one studies real
analysis on the basis of the axioms of a complete ordered ®eld, or one studies
the theory of vector spaces on the basis of the vector space axioms, etc.

Axiomatizing. Our data suggest that the structural conception is a cognitive
prerequisite to the axiomatizing proof conception ± a conception by which a
person is able to investigate the implications of varying a set of axioms, or to
understand the idea of axiomatizing a certain ®eld.

One of the questions we addressed in our studies was: Do undergraduate
mathematics majors possess the axiomatic conception at any level? For ex-
ample, do students understand that axioms in geometry require no speci®c
interpretation? In particular, can students consider their own intuitive space
(i.e., the Euclidean space) as a speci®c system that may or may not satisfy the
structure at hand?

1.1. A sample of results

Textbooks in axiomatic geometry usually begin with ®nite geometries as a
preparation for non-Euclidean geometries. As you see in Fig. 1 and Table 1,
the idea that geometric properties are not supposed to evoke spatial imagery is
virtually absent from studentsÕ conception. We should remember that this idea
is a relatively new concept in mathematics; it was born at the turn of this
century with the publication of HilbertÕs Grundlagen. Poincare, in his review of
the Grundlagen, saw a need to point to this seemingly self-evident feature of
the Grundlagen. To our students this was a very di�cult idea.

When students are unable to detach from a speci®c context, whether it is the
context of intuitive Euclidean space in geometry or the context of Rn in linear
algebra, we call that conception, contextual. And so, with the contextual
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conception, general statements are interpreted (and proved) in terms of a
speci®c context.

Judging form the historical development of geometry, we conjecture that the
contextual conception is developmentally inevitable, but it should have been
developed in the secondary school. What surprises us is its robust in¯uence on
students in an advanced stage in their mathematical education. We must ap-
preciate, however, the non-triviality of the structural conception.

Here is another example from history that helps us appreciate this state of
intellectual development. The modern notion of ``number'' was born when
symbols representing no speci®c reality were treated as objects that can be
operated upon by certain rules. These objects are de®ned not by what they
represent but by an a priori set of rules. Not all mathematicians of the 17th
century shared this new way of thinking; some raised serious doubts about its
intelligibility and viability. How is it possible to reason about symbols without
a concrete referent and especially without a geometrical referent, as in the case
of imaginary numbers and negative numbers? How is it possible, asked Ar-
nauld, a 17th century mathematician, to subtract a greater quantity from a
smaller one, where the mental image of ``quantity'' is nothing else but a
physical amount or a spatial capacity? Moreover, how is it possible to un-
derstand such a statement as �ÿ1�=1 � 1=�ÿ1�, where the quantity 1 is larger

Table 1

N %

Contextual (Imposition of extraneous notions, e.g.,

``betweeness'', ``distance'', ``collinearity''

17 55

Axiomatic 5 16

Undecided 9 29

Total 31 100

Fig. 1.
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than the quantity ÿ1, and therefore, the division of 1 by ÿ1 must be smaller
than the division of ÿ1 by 1 [2]?

Let me conclude this category with two items: Examples of studentsÕ re-
sponses that demonstrate the absence of the structural conception from our
studentsÕ reasoning (Fig. 2), and a quantitative comparison between the two
conceptions in one of the teaching experiments (Table 2).

StudentsÕ inability to deal with any geometric structure but the one corre-
sponding to their spatial imageries is reminiscent of the GreekÕs view of
mathematics. In Greek science, concepts are formed in continual dependence
on, and interpreted from the point of view of, their ``natural'' foundations, and
their scienti®c meaning is abstracted from ``natural,'' pre scienti®c experience.
In modern science, on the other hand, what intended by the concept is not an
object of immediate insight, but an object whose scienti®c meaning can be
determined only by its connection to other concepts, by the total edi®ce to
which it belongs, and by its function within this edi®ce [3].

To illustrate the phenomenon of how students are constrained by their
physical imageries, consider the following example. When linear algebra in-
structors present to the students a problem such as ``Given W is a subspace of
Rn, ®nd the projection of c onto W'' along with the sketch in Fig. 3, they do not
mean the sketch to be literal but symbolic. It turned out that such a sketch is
not conceived as a REPRESENTATION of the abstract setting, but as the
ACTUAL OBJECT of inquiry.

Another illustration of students' appeal to their immediate physical reality
rather than to the actual de®nition comes from their di�culties with the con-
cepts of span, dependence, and independence. For example, the sketches in Fig.
4, when presented to illustrate the de®nition,

spanfa1; . . . ; akg � fx1a1 � � � � xkakjx1; . . . ; xk are real numbers g;

are not conceived as a special cases of the concept of span, but the ACTUAL
OBJECTS of inquiry.

Fig. 2.
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2. Category 2: students' understanding of mathematics in relation to the role of

aristotelian causality in the mathematics of the renaissance

We tend to associate misconception and missing conceptions only with
mathematically weak students. But in fact, all students, the weak and the able,
in their desire to understand and make sense of the mathematical concepts we
intend to teach them, encounter di�culty, and demonstrate as a result be-
haviors that in many cases are di�cult to explain. Figs. 6 and 7 present ex-
amples of proofs to which certain students ± always the more able students in
the class ± respond in a manner that has perplexed me. When the proofs are
repeated to these students, they seem to understand each step in the proof, but
at the end they reiterate the same question. What is the conceptual base for

Table 2

N %

Contextual (General vector space statements are

interpreted and proved in the contest of Rn)

33 66

Structural 10 20

Undecided 7 14

Total 50 100

Fig. 3.

Fig. 4.
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these responses? What really is the question these students are asking? While
further research is needed to answer these questions, in what follows I will o�er
a conjecture.

Before I suggest what might be hidden in these to-us-strange responses, let
me turn again to history:

``We do not think we understand something until we have grasped the why
of it. . . . To grasp the why of a thing is to grasp its primary cause'', asserts
Aristotle in Posterior Analytics. Mathematics is not a perfect science, argued
16±17th century philosophers, because an ``implication'' is not just a logical
consequence; it must also demonstrate the cause of the conclusion. Some

Fig. 6.

Fig. 5.
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mathematicians (e.g., Barozzi, 16±17th century) argued that some parts of
mathematics are more scienti®c (causal) than others; but that proof by con-
tradiction is not a causal proof, and therefore it should be eliminated from
mathematics. Others (e.g., Barrow, 16±17th century) argued that all mathe-
matics proofs are causal including proof by contradiction (see [2]).

To illustrate the nature of this debate, consider the Euclid's Proposition 1.32
and its proof:

The sum of the three interior angles of a triangle is equal to 180°.

Proof. Construct CE parallel to AB (Fig. 8). Then the alternate angles BAC
and ACE are congruent and the corresponding angles ABC and ECD are
congruent. Hence,

Fig. 7.

Fig. 8.
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m�ABC� � m�BAC� � m�ACB� � m�ECD� � m�ACE� � m�ACB� � 180:

What is the cause of the property that is proved here, asked these philos-
ophers? The proof appeals to two facts about the auxiliary segment CE and the
external angle ACD. But these facts, they argued, cannot be the true cause of
the property. For the property holds whether or not the segment CE is pro-
duced and the angle ACD considered.

The scienti®caness of mathematics was denied primarily based on the per-
vasive use of proofs by contradiction, which, in the eyes of many philosophers,
did not qualify as causal proofs. When a statement ``A implies B'' is proved by
showing how NOT B (and A) leads logically to an absurdity, we do not learn
anything about the causality relationship between A and B. Nor, continued
these philosophers to argue ± do we gain any insight of how the result was
obtained [2].

Another interesting argument against the scienti®caness of mathematics was
this: If mathematical proof were scienti®c (i.e., causal), then proofs for ``A if
and only if B'' statements entail that A is the cause of B and B is the cause of A.
Hence, A is the cause of itself, which is absurdity, because nothing can be its
own cause.

Since the basis of proof by exhaustion is proof by contradiction, it too was
unsatisfactory to many mathematicians of the 16th and 17th centuries. They
felt that the ancients, who broadly used proof by exhaustion to avoid explicit
use of in®nity, failed to convey their methods of discovery.

Were these issues of marginal concern to the mathematics of the sixteen and
seventeen centuries, or had they signi®cantly a�ected it? To what extent did the
practice of mathematics in the 16 and 17 centuries re¯ects a global epistemo-
logical positions that can be traced back to Aristotle's speci®cations for perfect
science? These are important questions, if we are to draw a parallel between the
individual's epistemology of mathematics and that of the community.

Mancosu [2] argues that the practice of Cavalieri, Guldin, Descartes, and
Wallis, and other important mathematicians re¯ects a deep concern with these
issues. He shows, for example, how two of the major works of the 1600s ± the
work by Cavalieri on indivisibles and that by Guldin, his rival, on centers of
gravity ± aimed at developing mathematics by means of direct proofs. These
two mathematicians, argued Mancosu, explicitly avoided proofs by con-
tradiction in order to conform to the Aristotelian position on what constitutes
perfect science ± a position Aristotle articulated in his Posterior Analytics.

Descartes, whose work represents the most important event in 17th-century
mathematics, was heavily in¯uenced by these developments. Descartes ap-
pealed to a priori proofs against proofs by contradiction because they show
how the result is obtained and why it holds, and they are causal and ostensive.

Before we go back to the students' responses in Figs. 6 and 7, let me present
one more observation. A group of eight inservice teachers were presented with
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two proofs of Proposition 1.32: the proof just presented and the following
proof which was originally o�ered by a preservice teacher (Amy) taking a
course in college geometry (see [1]):

Amy demonstrated to the whole class how she imagines the theorem,
``The sum of the measures of the interior angles in a triangle is 180°.''
Amy said something to the e�ect that she imagines the two sides AB
and AC of a triangle ABC being rotated in opposite directions through
the vertices B and C, respectively, until their angles with the segment
BC are 90° (Fig. 9a and b). This action transforms the triangle ABC into
the ®gure A0BCA, where A0B and A00C are perpendicular to the segment
BC. To recreate the original triangle, the segments AB and A00C are tilted
toward each other until the points A0 and A00 merge back into the point A
(Fig. 9c). Amy indicated that in doing so she ``lost two pieces'' from the
90° angles B and C (i.e., angles A0BA and A00 CA) but at the same time
``gained these pieces back'' in creating the angle A. This can be better
seen if we draw AO perpendicular to BC: angles A0BA and A00 AC are
congruent to angles BAO and OAC, respectively (Fig. 9d).

All eight teachers preferred Amy's proof to the standard Euclid's proof,
saying that it shows why the sum of the angles in a triangle is 180°. They in-
dicated that through Amy's proof they could see how the construction of the
triangle ``made'' the sum of the angles 180°. For these teachers, I suggest,
Amy's proof was a causal proof ± an enlightening proof that gives not just mere
evidence for the truth of the theorem but the cause of the theorem's assertion.

The history of the development of the concept of proof, as I have brie¯y
reviewed here, suggests that our current understanding of proof was born out
of an intellectual struggle during the Renaissance about the nature of proof ± a
struggle in which Aristotelian causality played a signi®cant role. If we assume
that the epistemology of the individual mirrors that of the community, we

Fig. 9.
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should expect the development of students' conception of proof to include at
least some of the major obstacles encountered by the mathematics community
through history. I conjecture that Aristotelian causality is one of these obsta-
cles. Causality is more likely to be observed with able students, who seek to
understand phenomena in depth, than with weak students, who usually are
satis®ed with what ever the teacher presents. It is possible, for example, that the
students' responses in Figs. 6 and 7 are a manifestation of the causality phe-
nomenon. The students who responded to the proof in Fig. 6 by saying ``What
if the system weren't homogeneous?'' had interpreted the homogeneous system
AX � 0 to be the cause for the independency of the vectors

a
b

� �
;

c
d

� �
;

e
f

� �

and so they desired to understand the exact causality relationship. Similarly,
the students who responded to the proof in Fig. 7 by saying ``What if you took
di�erent polynomials'' sought to understand the cause-e�ect relationship be-
tween the Lagrange polynomials,

pi�x� �
Yk

j 6�i

�xÿ kj�
�ti ÿ tj�

and the theorem's assertion about the independency of the eigenvectors.

3. Implications

The observation regarding causality is still in its infancy. Systematic studies
on the existence of this phenomenon with students must be conducted before
any conclusion can be drawn.

On the other hand, our data strongly support the observation regarding
students' di�culties extending their proof understandings ± from the contex-
tual proof to the structural proof and axiomatizing proof ± thus, my conclu-
sions will be based on this observation alone.

1. I have doubts about the wisdom of starting o� college geometry courses
with ®nite geometries. Our data suggest that a more promising approach would
be to begin with axiomatic Euclidean geometry, which corresponds to and
extends studentsÕ physical reality.

2. For high school geometry, I believe it is imperative to reinstate synthetic
Euclidean geometry in high school mathematics curricula, whose place has
recently been signi®cantly eroded. Synthetic Euclidean geometry in 2 and 3
dimensions can serve as an intermediate stage to an advanced level of math-
ematical thinking, particularly, to the structural conception of proof.
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An obvious justi®cation for this assertion is that Synthetic Euclidean ge-
ometry is a concrete context in which students can learn the concept of a de-
ductive system ± a concept college students largely lack. I will not discuss this
justi®cation here but focus instead on a less obvious, but critically important
justi®cation.

We have seen earlier how students are unable to detach from their spatial
imageries in dealing with abstract algebraic structure ± a phenomenon we
called contextual conception. One manifestation of this conception is that
students do not understand the role of symbolic ®gures (geometric illustra-
tions) in algebraic structures such as Rn. Synthetic Euclidean geometry is an
excellent context to teach students to view symbolic ®gures as representations
of ``reality'', not the ``reality'' itself. For example, in proving the statement in
Fig. 5a by proof-by-contradiction, one must ®rst assume that lines l and m
intersect (Fig. 5b). This usually causes a discomfort to many students because
the ®gure con¯icts with their image of a straight line, and they begin to realize
that the ®gure is a representation of a hypothetical spatial situation. Similarly,
Fig. 5c is a source of di�culties to many students because the properties the
student is asked to prove are not directly seen in the ®gure but needs to be
visualized. Again, here too the students begin to learn that the ®gure is just a
representation of reality, not the reality itself.

It is interesting to note that according to our data, the ability to deal with 3-
dimensional Euclidean geometry correlates with the ability to think axiomat-
ically (as in ®nite geometries).

3. My conclusions for the teaching of linear algebra might be controversial.
Instructors and textbook writers have good intention when they start with
geometric motivations in introducing new concepts. We all intend to use ge-
ometry to provide students with geometric insight. But, I am afraid, these
geometric illustrations do not achieve their purpose. On the contrary, they
hinder students learning the true concepts of linear algebra.

The sequence in which we present material to students and the way we in-
troduce new concepts are critical learning factors. When geometry is intro-
duced before the concept has been formed, the students view the geometry as
the raw material to be studied, they remain, as a result, in the restricted world
of geometric vectors, and do not move up to the general case.

As we should be careful not to move students up hastily from Rn to more
general vector spaces, we should be as careful how to introduce special cases
of Rn, namely the geometry of directed segments. The student must stand on
solid ground as to the world he or she is studying. In elementary linear al-
gebra, there should be one world: Rn ± at least during the early period of the
course.

Having said this, I want to emphasize and reemphasize that I am not ad-
vocating the elimination of geometry from linear algebra. On the contrary,
geometry can be a very powerful tool in solidifying concepts the students have
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formed or begun to form. I am only raising questions about its usefulness in
motivating new linear algebra concepts.

There are at least three reasons that make geometric motivations very
popular among textbooks and instructors of linear algebra.

The ®rst reason is that the instructor sees how the geometric situation is
isomorphic to the algebraic one and so he or she believes that the geometric
concept can be a corridor to the more abstract algebraic concept. The problem
with this preconception is that the student does not share this important in-
sight.

The second reason is that the geometric concepts are relatively easy to un-
derstand, and so it is only natural to use them as startup ideas. For example,
the concept of linear independence is commonly introduced via collinear di-
rected segments. The problem with examples such as this is that they are very
simple and easily understood by every student, whereby the students form an
extremely powerful concept image that it is hard for many to relinquish.

The third reason is that the instructor well understands that the geometric
illustrations are only introductory ideas to the abstract concepts that are yet to
come. He or she knows that the true labor is to abstract the concepts from the
geometric ideas and has developed the patience to do so. Unfortunately, a
regular student does not have this basic metamathematical understanding.
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