Chapter 3 Regions

Region; group of connected pixels with similar properties correspond to objects - image partitioning

3.1 Regions and Edges

gray level image -> image attribute using partition

two approaches; region based segmentation boundary estimation using edge detection

Region based segmentation;

all pixels corresponding to an object are grouped together and marked as one region criterion; value similarity, spatial proximity good to ideal case, but not satisfied in many situations

Boundary estimation using edge detection

pixels on region boundary; edges algorithm ; based on intensity characteristics, texture, motion

3.2 Region segmentation

image I homogenity predicate; P(.)

$$\bigcup_{i}^{n} R_{i} = I$$

$$P(R_{i}) = True$$

$$P(R_{i} \bigcup R_{j}) = False$$

algorithm robust to variations in the scene ; knowledge

3.2.1 Automatic Thresholding

knowledge; intensity characteristics of objects size of objects fractions of an image occupied by the objects No. of differents of objects appearing in an image

n objects; O_1, O_2, \cdots, O_n including background

gray values populations; $\pi_1, \pi_2, \dots, \pi_n$ with probability distribution $p_1(z), \dots, p_n(z)$

Assume; dark object on light background

P-Tile Method

p % of image area ; object

Mode Method

gray values; (μ_1, σ_1) (μ_2, σ_2) ideal case; $\sigma_1 = \sigma_2 = 0$

peakiness, valleyness

Algorithm 3.1 Peakiness detection for appropriate threshold selection

- Find the two highest local maxima in the histogram that are at some minimum distance apart local maxima are at; g_i, g_j
- (2) Find the lowest point gk in the histogram H between $g_{\rm i}$, $g_{\rm j}$
- (3) Find the peakiness, defined as $min(H(g_i),\ H(g_j))/H(g_k)$
- (4) Use the combination (g_i, g_j, g_k) with highest peakiness g_k is a good threshold

Iterative threshold selection

- (1) select an initial estimate of the threshold, T. i.e. average intensity
- (2) Partition image into R_1 , R_2 using T
- (3) calculate mean gray values μ_1 for $R_1, \, \mu_2$ for R_2

(4) select a new threshold; $T = \frac{1}{2}(\mu_1 + \mu_2)$

(5) repeat until mean values don't change

Adaptive Thresholding

several mXm subimages T_{ij} for each subimage

Variable Thresholding

uneven illumination background normalizing - find fitted plane

Double Thresholding

Algorithm 3.3 Double thresholding for region growing

- (1) Select two T_1 , T_2
- (2) Partition the image into 3 part; $R_1;\ (\ < T_1$), $R_2;\ (T_1 < < T_2$), $R_3;\ (>T_2)$
- (3) for each pixels in R_2 , if the neighbor is in R_1 , then reassign the pixels to region R_1
- (4) Repeat step 3 until no pixels are reassigned
- (5) Reassign the left pixels in R_2 to R_3

3.2.2 Limitations of Histogram Methods

Histogram based region; cannot applied to complex scene

3.3 Region Representation

Array representation

 Region labeling
 Bitmap
 not symbolic information represented

 Hierarchical representation

(2-1) Pyramids
 for nXn image
 n/2Xn/2 , n/4Xn/4 , 1X1 ; k reduced images

(2-2) Quad treesthree type nodes; white, black, grayrecursive splitting of an image

(3) Symbolic representation

Enclosing rectangle Centroid Moments Euler Number