Chapter 2 Binary Image Processing

continuous gray level \rightarrow quantized 256, 4092 binary image less expensive hardware fast processing in case silhouette is enough special illumination only few objects in a scene object pixel ; $1 \rightarrow$ black background pixel ; $0 \rightarrow$ white - formation of binary images - geometric properties - topological properties

- object recognition

2.1 Thresholding

problem; identify the subimages of object very difficult problem for computers

segmentation; partitioning of an image into regions regions; an object candidate

Def. 2.1 A region is a subset of an image

Def. 2.2 Segmentation is grouping pixels into regions s.t.

- $\bigcup_{i=1}^{k} P_i$ = entire image ($\{P_i\}$ is an exhaustive partitioning)
- $P_i \cap P_j = 0$, $i \neq j$ ($\{P_j\}$ is an exclusive partitioning)
- Each region P_i satisfies a predicate; all points of the partition have some common property.

has uniform intensity

• Pixels belonging to adjacent regions, when taken jointly, do not satisfy the predicate.

Thresholding

object-background separation

$$
B[i,j] = F_T[i,j]
$$

for a darker object on a lighter background

$$
F_T[i,j] = \begin{cases} 1 & \text{if } F_T[i,j] \le T \\ 0 & \text{otherwise} \end{cases}
$$

if object intensity is in a range

$$
F_T[i,j] = \begin{cases} 1 & \text{if } T_1 \le F_T[i,j] \le T_2 \\ 0 & \text{otherwise} \end{cases}
$$

if several disjoint intervals is,

$$
F_T[i, j] = \begin{cases} 1 & \text{if } F[i, j] \in Z \\ 0 & \text{otherwise} \end{cases}
$$

Fig. 22

Comment)

selection of threshold; experience; case by case automatic thresholding

2.2 Geometric Properties

assumptions; camera location and environment are known objects are different in size and shape only one object

2.2.1 Size

area; zeroth order moment

$$
A = \sum_{i=1}^{n} \sum_{j=1}^{m} B[i, j]
$$

2.2.2 Position

position of object is important known; position of camera relative to the table

enclosing rectangle center of area

$$
\overline{x} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} j B[i, j]}{A}
$$

$$
\overline{y} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} i B[i, j]}{A}
$$

2.2.3 Orientation

elongated object -> orientation

find a line s.t

minimize
$$
\chi^2 = \sum_{i=1}^n \sum_{j=1}^m r_{ij}^2 B[i,j]
$$

$$
r_{ij}: \quad \text{if } (i,j) \in \mathbb{H} \quad \text{and} \quad \text{if } \mathbb{H} \quad \text{if } \mathbb{H} \quad \text{if } (i,j) \in \mathbb{H} \quad \text{if } \mathbb{H} \quad \text{if } \mathbb{H} \quad \text{if } \mathbb{H} \quad \text{if } (i,j) \in \mathbb{H} \quad \text{if } \mathbb{H} \quad \text{if } \mathbb{H} \quad \text{if } (i,j) \in \mathbb{H} \quad \text{if } (
$$

- 극좌표 직선식; $\rho = x \cos \theta + y \sin \theta$
- * 모든 점으로부터 거리의 합을 최소화하는 직선 찾기

• for
$$
\rho
$$

\nfor a point (x,y)
\n $r^2 = (x \cos \theta + y \sin \theta - \rho)^2$
\n $\chi^2 = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_{ij} \cos \theta + y_{ij} \sin \theta - \rho)^2 B[i, j]$
\nlet $\frac{\partial \chi^2}{\partial \rho} = 0$
\n $=\frac{\partial \chi}{\partial \rho} = \frac{\pi}{\cos \theta} + \frac{\pi}{\sin \theta}$

Comment) pass through center point

• for
$$
\theta
$$

\n $x^{'} = x - \overline{x}$, $y^{'} = y - \overline{y}$
\n $\chi^{2} = a \cos^{2} \theta + b \sin \theta \cos \theta + c \sin^{2} \theta$

$$
a = \sum_{i=1}^{n} \sum_{j=1}^{m} (x'_{ij})^2 B[i,j]
$$

\n
$$
b = 2 \sum_{i=1}^{n} \sum_{j=1}^{m} x'_{ij} y'_{ij} B[i,j]
$$

\n
$$
c = \sum_{i=1}^{n} \sum_{j=1}^{m} (y'_{ij})^2 B[i,j]
$$

\nlet
$$
\frac{\partial \chi^2}{\partial \theta} = 0
$$

\n
$$
\Rightarrow \tan(2\theta) = \frac{b}{a-c}
$$

\n
$$
\sin(2\theta) = \pm \frac{b}{\sqrt{b^2 + (a-c)^2}}
$$

\n
$$
\cos(2\theta) = \pm \frac{a-c}{\sqrt{b^2 + (a-c)^2}}
$$

if b=0, a=c
$$
\rightarrow
$$
 no unique axis
Elongation $E = \frac{\chi_{\text{max}}}{\chi_{\text{min}}} \ge 1$
Comment) $\text{atan2} = \{0\}$, elongation is 1 for circle

2.3 Projections

finding no. of 1 pixels on lines to each bins

• Horizontal & Vertical projection

$$
H[i] = \sum_{j=1}^{m} B[i, j]
$$

$$
V[j] = \sum_{j=1}^{n} B[i, j]
$$

Area, Center

$$
A = \sum_{j=1}^{m} V[j] = \sum_{i=1}^{n} H[i]
$$

$$
\overline{y} = \frac{\sum_{j=1}^{n} iH[i]}{A}
$$

$$
\overline{x} = \frac{\sum_{j=1}^{m} jV[i]}{A}
$$

• Diagonal projection

compute index for the histogram bucket for the current (i,j)

- affine transform (linear combination with constant) $d = a i + b j + c$ - pixel at upper right $(0, m-1)$ into first lower left $(n-1, 0)$ into last No. of bucket; $n+m-1$ i.e. ($0 \rightarrow n+m-2$) $0 + b(m-1) + c = 0$

$$
a \cdot 0 + b(m-1) + c = 0
$$

\n
$$
a(n-1) + b \cdot 0 + c = n + m - 2
$$

\n
$$
a = -b
$$

 $\Rightarrow d = i - j + m - 1$

Comment) Projection; useful features for recognition compact representation, fast algorithm

2.4 Run-Length Encoding

compact representation of a binary image length of the runs of 1 pixels

(1) start position, length of runs of 1s

(2) only length of runs starting with that of 1 runs

using (2)

 $r_{i,k}$; length of the kth run in the ith row

$$
A = \sum_{i=0}^{n-1} \sum_{k=0}^{(\frac{m_i-1}{2})} r_{i,2k+1}
$$

 m_i ; number of runs in the ith row

grouping object pixels together spatially close; spatial proximity

2.5.1 Definitions

Neighbors

p[i,j] has 4 pixels with common boundary 4 pixels with common corner

* Two pixels are 4-neighbors; if two pixels are with common boundary * 8-neighbor; if two pixels are with common corner

p[i,j] has 4 neighbors [i+1,j], [i-1,j], [i,j+1], [i,j-1] \rightarrow 4 connected 8 neighbor; 4 neighbor + [i+1, j+1], [i+1, j-1], [i-1,j+1], [i-1,j-1] -> 8 connected

Path

 $[i_0, j_0] \to [i_n, j_n]$

path; $[i_0, j_0], [i_1, j_1], [i_2, j_2] \cdots [i_n, j_n]$ $[i_k, i_k]$, $0 \le k \le n-1$; 4 path when using 4-connected 8 path when using 8-connected

Forground

set of 1 pixels ; S

Connectivity

- $p \in S$ is said to be connected to $q \in S$ if there is a path from p to q consisting entirely of pixels of S
- equivalance relation

for p, q, $r \in S$

- (1) reflexivity; p is connected to p
- (2) commutatively
	- if p is connected to q , then q is connected to p
- (3) transitivity if p is connected to q and q is connected to r, then p is connected to r

Connected components; object

A set of pixels in which each pixel is connected to all other pixels is called a connected component

Background

Background; set of all connected components of \overline{S} that have points on the image border Holes; all other connected components \overline{S} except backgrond

for S (object); 8 connectedness for \overline{S} (hole, background); 4 connectedness

Boundary(edge)

S'; boundary of S is the set of pixels of S that have 4 neighbor in \overline{S}

Interior

interior of S is (S-S')

Sourrounds

S is inside T

if any 4 path from any point of S to the border of the pixture must intersect T

major task; finding connected components in an image surface \leq > spatially close one object in an image many object in an image

Recursive Algorithm

Algorithm 2.1 (used on parallel processor)

(1) Scan the image to find an unlabeled 1 pixel and assign it a new label L

(2) Recursively assign a label L to all its 8 neighbor

(3) Stop if there are no more unlabeled 1 pixels

 (4) goto step (1)

Sequential Algorithm

Algorithm 2.2 (using 4 connectivity)

- (1) Scan the image left to right, top to bottom
- (2) if the pixel is 1, then
- (a) If only one of its upper and left neighbors has a label, then copy the label
- (b) If both have the same label, then copy the label
- (c) If both have different labels, then copy the upper label and enter the labels in the equivalence table as equivalent labels
- (d) Otherwise assign a new label to this pixel and enter this label in the equivalence table
- (3) If there is more pixels to consider, then goto step (2)
- (4) Find the lowest label for each equivalent set in the equivalence table
- (5) Scan the pixture, Replace each label by the lowest label in its equivalent set

2.5.3 Size flter due to noise object; no. of pixels \geq T₀ noise; no. of pixels $\leq T_0$

2.5.4 Euler number feature of an object topological feature; invariant to translation, rotation, scaling

 $E = C - H$

C; number of connected components

H; number of Holes

2.5.5 Region boundary

Algorithm 2.3 Boundary following Algorithm

- (1) Find the starting pixel $s \in S$ for the region using a systematic scan, i.e. from left to right and from top to bottom of the image
- (2) current pixel on boundary c=s, let 4 neighbor to the west of s be $b \in \overline{S}$
- (3) 8-neighbor of c starting with b in clockwise order; n_1 , n_2 , ... n_8 Find nⁱ for the first i that is in S
- (4) set $c=n_i$, and $b=n_i-1$
- (5) Repeat step (3) and (4) until c=s

2.5.6 Area and Perimeter

Area; number of pixels in S along with labeling

Perimeter; definitions

- (1) sum of lengths of the cracks; line between $p \in S$ and $q \in \overline{S}$
- (2) number of steps taken by a boundary following algorithm
- (3) number of boundary pixels

2.5.7 Compactness

isoperimetric inequality

 $\frac{P^2}{A}$ ≥4π P; perimeter, A; Area

circle; most compact

for a line; compact is ∞ compactness of square \leq one of rectangle

2.5.8 Distance Measure

distance b.t.w. two pixels

conditions of for distance measure

 $d(p, q) \ge 0$ and $d(p, q) = 0$ iff $p = q$ $d(p,q)=d(q,p)$ $d(p, r) \leq d(p, q) + d(q, r)$

Euclidean;

$$
d_{Euclidean}([i_1, i_2], [i_2, i_2]) = \sqrt{(i_1 - i_2)^2 + (j_1 - j_2)^2}
$$
 ;

; computationally intensive, real value \Rightarrow integer valued square

City-block;

 $d_{\text{city}} = |i_1 - i_2| + |j_1 - j_2|$ Chessboard; $d_{\text{ches}} = \max(|i_1 - i_2|, |j_1 - j_2|)$

disc of k ; set of pixels at distance $\leq k$

Distance transform; obtaining an image representing distance from $p \in S$ to $q \in \overline{S}$

 $f^{0}[i,j] = f[i,j]$ $f^{m}[i,j] = f^{0}[i,j] + \min (f^{m-1}[u,j])$ for all [u,v]; four neighbor of [i,j] s.t. $d([u, v], [i, j]) = 1$ m; iteration number

2.5.10 Medial Axis

distance is locally maximum if

 $d([i,j],\overline{S})\geq d([u,j],\overline{S})$

for all [u,v]; four neighbor of [i,j] s.t. $d([u, v], [i, j]) = 1$

set of pixels which are locally maximum; S*

skeleton, symmetric axis, medial axis

inner pixel detection; using medial axis and maximal disc at each pixel

binary valued image regions \rightarrow line; approximately center line, skeletons, core line

- reduce image components to their essential informations
- for elongated shapes
- document analysis, character stroke

Thinning requirements;

- (1) Connected image regions must thin to connected line structure; connectivity
- (2) Thinned result should be minimally 8 connected; minimal number of pixels
- (3) Approximate endline locations should be maintained; not make short
- (4) Thinning results should be approximate the medial lines
- (5) Extraneous spurs (short branches) caused by thinning should be minimized.

Iteratively peeled off window of nxn pixles peeled off one boundary layer

2.5.12 Expanding and Shrinking

Expanding; change a pixel from 0 to 1 if any neighbors of the pixel are 1 Shrinking; chnage a pixel from 1 to 0 if any neighbor of the pixel are 0 expanding background

$$
(Sm)-n \neq (S-n)m
$$

\n
$$
(S(m-n))
$$

\n
$$
S \subseteq (Sk)-k
$$

\n
$$
S \supset (S-k)k
$$

General case; dilation erosion from the study of shape operation between two binary image A, B

Intersection;

 $A \cap B = \{p | p \in A \text{ and } p \in B\}$

Union;

 $A \cup B = \{p \in A \text{ or } p \in B\}$

Complement;

 $\overline{A} = \{p|p \in \Omega \text{ and } p \notin A\}$, Ω ; all pixels are 1

vector sum of p[i,j] and $q[k,l] \Rightarrow p+q$ at [i+k, j+l] vector difference \Rightarrow at [i-k, j-l]