Chapter 11 Depth

two camera displaced from each other range image; depth at each pixel

11.1 Stereo Imaging

* image plane; coplanar with disparity and base line apart

* epipolar plane epipolar line

* conjugate pair; two points in different images

that are the projections of the same point in the scene * disparity; distance b.t. points of a conjugate pair when the two images are superimposed

* coplanar image

$$\frac{\frac{x}{z}}{\frac{x-b}{z}} = \frac{\frac{x_{l}}{f}}{\frac{x_{r}}{f}}$$
$$= \sum z = \frac{bf}{(x_{l} - x_{r})}$$

Knowing the disparity = depth at the point P (x, y, z)

 wide angle stereopsis; large baseline b => increase resolution matching difficult

11.1.1 Cameras in arbitrary position and orientation

two cameras ; in general position and orientation epipolar line; not parallel to image row

* two cameras; optical axes intersects at a point in space

disparity $d = x_I - x_r$; +

* active vision system

11.2 Stereo matching

finding the conjugate pairs correspondence problems for each point in the left image, find the corresponding point in the right image

points to be matched; distinctly different from its surrounding pixels

using both edge and region features

depth ; for only these feature points for other point ; interpolated

search area; epipolar line and its neighborhood

11.2.1 Edge matching

for binocular stereo

- Filter each image with Gaussian filter
- edge position within the row
- match edges at course resolutions ; by orientation and strength horizontal edges; cannot matched
- refine the disparity estimates by matching at fine scales; subpixel resolution

active control of camera angle; reduce false matching

11.2.2 Region correlation

edge matching; occluding edges: depth is not well defined strong edges

 Detection of interesting points in regions not good candidate; points in uniform region interest operator; finds high variance, isolated area

Directional variances;

$$\begin{split} I_1 &= \sum_{(x,y) \in S} [f(x,y) - f(x,y+1)]^2 \\ I_2 &= \sum_{(x,y) \in S} [f(x,y) - f(x+1,y)]^2 \\ I_3 &= \sum_{(x,y) \in S} [f(x,y) - f(x+1,y+1)]^2 \\ I_4 &= \sum_{(x,y) \in S} [f(x,y) - f(x+1,y-1)]^2 \\ & \text{S; 5X5, 11X11 window} \end{split}$$

Interest value at central pixel (x_c, y_c)

$$\begin{split} I(x_c, y_c) &= \min\left(I_1, I_2, I_3, I_4\right) \\ & \text{ in order to reject edge points} \end{split}$$

Good interesting point; local maxima > Th

* Matching

one window; around a feature in left image similar window; every potential matching feature in the right image calculate correlation;

(1) based on intensity

$$r(d_x, d_y) = \frac{\sum_{(x, y) \in S} [f_1(x, y) - \overline{f_1}] [f_2(x + d_x, y + d_y) - \overline{f_2}]}{\{\sum_{(x, y) \in S} [f_1(x, y) - \overline{f_1}]^2 \sum_{(x, y) \in S} [f_2(x + d_x, y + d_y) - \overline{f_2}]^2 \}^{1/2}}$$

 $\overline{f_1}$, $\overline{f_2}$; average intensities in the two regions

(2) thresholded signed gradient magnitude at each pixel

gradient magnitude at each pixel; using two thresholds

$$\begin{cases} -1 \\ 0 \\ 1 \end{cases}$$

no normalization

- depths of the scene points corresponding nearby feature points are to be close to one another
- difficulties; selection of interesting points

high variance: at edge, or discontinuous surface but smootheness constraint not hold using structured light

11.3 Shape from X

extracting shape information from intensity image estimate local surface orientation

- Photometric stereo

camera, object; stationary

3 images of the same scene using light sources from 3 different direction

local surface orientation; using surface reflectance properties

no corresponding problem

but controlled illumination

- Shape from texture

texture properties; density, size, orientation

texture gradient; mag. and direction of the maximum change in the texture element (circle appearing ellipses)

structuring light with regular grid; vanishing points

problems; locating and quantifing texture primitives and their properties

- Shape from focus out of focus; blur

- Shape from motion

11.4 Range imaging

rang imaging system, range image, depth map

triangulation; structured lighting radar ; acoustic or laser range finder

- 11.4.1 Structured lighting
- (1) light beam and camera

$$[x \ y \ z] = \frac{b}{f \cot \Theta - x'} [x' \ y' \ f]$$

sequential nature slow

(2) using plane of light / two dimension light pattern

light pattern on object; discontinuity, orientation and curvature change panned light source or moving object multiple light ; encoded pattern avoiding ambiguity

11.4.2 Imaging radar

pulsed light; phase shift modulated beam

11.5 Active vision

biological system actively control; parameter, characteristic of the system