C Compiler
Reference Manual

Custom Computer Services Inc.
May 2001

Copyright © 1994, 2001 Custom Computer Services, Inc.

All rights reserved worldwide. No part of this work may be reproduced or copied
in any form or by any means- electronic, graphic, or mechanical, including
photocopying, recording, taping, or information retrieval systemsQ without prior
permission

C Compiler Reference Manual
Table of Contents

Table of Contents

OVERVIEW 1
PCB, PCM AND PCH OVERVIEW 1
PCW OVERVIEW 1
TECHNICAL SUPPORT 1
INSTALLATION 2
INVOKING THE COMMAND LINE COMPILER 2
MPLAB INTEGRATION 3
DIRECTORIES 4
FILE FORMATS 4
DIRECT DEVICE PROGRAMMING 4
DEVICE CALIBRATION DATA 4
UTILITY PROGRAMS 5
PCW IDE 6
FILE MENU 6
PROJECT MENU 7
EDIT MENU 8
OPTIONS MENU 8
CoOMPILE OPTIONS 10
VIEW MENU 10
TooLs MENU 12
HELP MENU 14
PCW EDITOR KEYS 15
PROJECT WIZARD 17
PRE-PROCESSOR 18
PRE-PROCESSOR DIRECTIVES 19
#ASM 19
#BIT 22
#BYTE 22
#CASE 23
_ _DATE_ _ 24
#DEFINE 24
#DEVICE 25
_ _DEVICE_ _ 26

C Compiler Reference Manual
Table of Contents

#ERROR 26
#FUSES 27
#ID 27
#IF EXPR 28
#IFDEF 29
#INCLUDE 30
#INLINE 31
#INT_XXXX 31
#INT_DEFAULT 32
#INT_GLOBAL 33
#LIST 34
#LOCATE 34
#NOLIST 34
#OPT 35
#ORG 35
__PCB_ _ 37
__PCM_ _ 37
__PCH__ 38
#PRAGMA 38
#PRIORITY 38
#RESERVE 39
#ROM 39
#SEPARATE 40
#TYPE 41
#UNDEF 41
#USE DELAY 42
#USE FAST_IO 42
#USE FIXED_IO 43
#USE I12C 43
#USE RS232 44
#USE STANDARD_IO 45
#ZERO_RAM 46
DATA DEFINITIONS 47
DATATYPES 47
FUNCTION DEFINITION 50
FUNCTION DEFINITION 50
REFERENCE PARAMETERS 51

C Compiler Reference Manual
Table of Contents

C STATEMENTS AND EXPRESSIONS 52
PROGRAM SYNTAX 52
COMMENT 52
STATEMENTS 53
EXPRESSIONS 54
OPERATORS 55
OPERATOR PRECEDENCE 56
BUILT-IN FUNCTIONS 57
ABS() 59
ACOS() 59
ASIN() 59
ATAN() 59
ATOI() 59
ATOL() 59
BIT_CLEAR() 60
BIT_SET() 61
BIT_TEST() 62
CEIL() 62
COS() 63
DELAY_CYCLES() 63
DELAY_MS() 64
DELAY_US() 64
DISABLE_INTERRUPTS() 65
ENABLE_INTERRUPTS() 66
EXP() 67
EXT_INT_EDGE() 67
FLOOR() 68
GET_TIMERX() 69
GETC() 69
GETS() 70
12C_POLL() 71
12C_READ() 71
12C_START() 72
12C_STOP() 73
12C_WRITE() 74
INPUT() 74
INPUT_Xx() 75
ISAMOUNG() 76

ISALNUM(CHAR) 77

C Compiler Reference Manual
Table of Contents

KBHIT() 78
LABS() 79
LCD_LOAD() 79
LCD_SYMBOL() 80
LOG() 81
LOG10() 81
MEMCPY() 82
MEMSET() 83
OUTPUT_BIT() 83
OUTPUT_FLOAT() 84
OUTPUT_HIGH() 85
OUTPUT_LOW() 85
OUTPUT_A() 86
PORT_B_PULLUPS() 87
POW() 87
PRINTF() 88
PSP_OUTPUT_FULL() 89
PUTC() 90
PUTS() 91
READ_ADC() 91
READ_BANK() 92
READ_CALIBRATION() 93
READ_EEPROM() 94
READ_PROGRAM_EEPROM () 94
RESET_CPU() 95
RESTART_CAUSE() 95
RESTART_WDT() 96
ROTATE_LEFT() 97
ROTATE_RIGHT() 98
SET_ADC_CHANNEL() 98
SET_PWM1_DUTY() 99
SET_RTCC() 100
SET_TRIS_A() 101
SET_UART_SPEED() 102
SETUP_ADC(MODE) 103
SETUP_ADC_PORTS() 103
SETUP_CCP1() 104
SETUP_COMPARATOR() 105
SETUP_COUNTERS() 106
SETUP_LCD() 107
SETUP_PSP() 108
SETUP_SPI() 109
SETUP_TIMER 0 () 109

C Compiler Reference Manual
Table of Contents

SETUP_TIMER_1() 110
SETUP_TIMER_2() 111
SETUP_TIMER_3() 112
SETUP_VREF() 113
SETUP_WDT () 113
SHIFT_LEFT() 114
SHIFT_RIGHT() 115
SIN () 116
SLEEP() 117
SPI_DATA_IS_IN() 117
SPI_READ() 118
SPI_WRITE() 119
SQRT() 119
STANDARD STRING FUNCTIONS 120
STRTOK() 121
STRCPY() 123
SWAP() 123
TAN() 124
TOLOWER() 124
WRITE_BANK() 125
WRITE_EEPROM() 126
WRITE_PROGRAM_EEPROM () 126
COMPILER ERROR MESSAGES 128
COMMON QUESTIONS AND ANSWERS 139
How DOES ONE MAP A VARIABLE TO AN I/O PORT? 140
WHY DOES A PROGRAM WORK WITH STANDARD |/O BUT NOT WITH FAST l/Q? ===nuux 142
WHY DOES THE GENERATED CODE THAT USES BIT VARIABLES LOOK SO UGLY? ----143
WHY IS THE RS-232 NOT WORKING RIGHT? 144
How cAN | USE TWO OR MORE RS-232 PORTS ON ONE PIC? 146
How DOES THE PIC CONNECTTO APC? 147
WHY Do | GET AN OUT OF ROM ERROR WHEN THERE SEEMS TO BE ROM LEFT?-148
WHAT CAN BE DONE ABOUT AN OUT OF RAM ERROR? 149
WHY DOES THE .LST FILE LOOK OUT OF ORDER? 150

How Is THE TIMERO INTERRUPT USED TO PERFORM AN EVENT AT SOME RATE? ---151
How DOES THE COMPILER HANDLE CONVERTING BETWEEN BYTES AND WORDS? --- 152
How DOES THE COMPILER DETERMINE TRUE AND FALSE ON EXPRESSIONS? ----- 153

C Compiler Reference Manual
Table of Contents

WHAT ARE THE RESTRICTIONS ON FUNCTION CALLS FROM AN INTERRUPT FUNCTION?

154
WHY DOES THE COMPILER USE THE OBSOLETE TRIS? 155
How DOES THE PIC CONNECT TO AN I12C DEVICE? 155
INSTEAD OF 800, THE COMPILER CALLS 0. WHY? 156
INSTEAD OF AO, THE COMPILER IS USING REGISTER 20. WHY? 156
How DO | DIRECTLY READ/WRITE TO INTERNAL REGISTERS? 157
HOW CAN A CONSTANT DATA TABLE BE PLACED IN ROM? 158
How CAN THE RB INTERRUPT BE USED TO DETECT A BUTTON PRESS? =-=====n=sn==-= 159
WHAT IS THE FORMAT OF FLOATING POINT NUMBERS? 160
WHY DOES THE COMPILER SHOW LESS RAM THAN THERE REALLY [S? --------------- 161
WHAT IS AN EASY WAY FOR TWO OR MORE PICS TO COMMUNICATE? ------=--==------ 162
How Do | WRITE VARIABLES TO EEPROM THAT ARE NOT A BYTE? -------=--=-------- 163
How Do | GET GETC() TO TIMEOUT AFTER A SPECIFIED TIME? 164
How CAN | PASS A VARIABLE TO FUNCTIONS LIKE OUTPUT_HIGH()? --------------- 165
How Do | PUT ANOP AT LOCATION 0 FOR THE ICD? 166
How DO | DO A PRINTF TO A STRING? 166
How DO | MAKE A POINTER TO AFUNCTION? 167
EXAMPLE PROGRAMS 168
SOFTWARE LICENSE AGREEMENT 177

vi

C Compiler Reference Manual
Overview

OVERVIEW
PCB, PCM and PCH Overview

The PCB, PCM and PCH are separate compilers. PCB is for 12 bit opcodes,
PCM is for 14 bit opcodes and PCH is for the 16 bit PIC 18. Since much is in
common between the compilers both are covered in this reference manual.
Features and limitations that apply to only specific controllers are indicated
within. These compilers are specially designed to meet the special needs of the
PIC controllers. These tools allow developers to quickly design application
software for these controllers in a highly readable high-level language.

The compilers have some limitations when compared to a more traditional C
compiler. The hardware limitations make many traditional C compilers
ineffective. As an example of the limitations, the compilers will not permit
pointers to constant arrays. This is due to the separate code/data segments in
the PIC hardware and the inability to treat ROM areas as data. On the other
hand, the compilers have knowledge about the hardware limitations and does the
work of deciding how to best implement your algorithms. The compilers can
implement very efficiently normal C constructs, as well as input/output operations
and bit twiddling operations.

PCW Overview

PCW is the professional package that includes both the PCM and PCB
compilers. PCW has a Windows IDE. PCW has the same syntax as the
command line compilers. The PCH compiler is available for PCW as an optional
add-on.

Technical Support

The latest software can be downloaded via the Internet at:
http://www.ccsinfo.com/download.htmi

for 30 days after the initial purchase. For one year’s worth of updates, you can
purchase a Maintenance Plan directly from CCS. Also found on our web page
are known bugs, the latest version of the software, and other news about the

compiler.

We strive to ensure that each upgrade provides greater ease of use along with
minimal, if any, problems. However, this is not always possible. To ensure that

C Compiler Reference Manual
Overview

all problems that you encounter are corrected in a diligent manner, we suggest
that you email us at support@ccsinfo.com outlining your specific problem along
with an attachment of your file. This will ensure that solutions can be suggested
to correct any problem(s) that may arise. We try to respond in a timely manner
and take pride in our technical support.

Secondly, if we are unable to solve your problem by email, feel free to telephone
us at (262) 797-0455 x 32. Please have all your supporting documentation on-
hand so that your questions can be answered in an efficient manner. Again, we
will make every attempt to solve any problem(s) that you may have. Suggestions
for improving our software are always welcome and appreciated.

Installation

PCB, PCM, and PCH Installation:

Insert the disk in drive A and from Windows Start|Run type:
A:SETUP

PCW Installation:
Insert CD ROM, select each of the programs you wish to install and follow the
on-screen instructions.

Invoking the Command Line Compiler

The command line compiler is invoked with the following command:
CCscC options cfilename

Valid options:
+FB Select PCB (12 bit) -D Do not create debug file
+FM Select PCM (14 bit) +DS Standard .COD format debug file
+FH Select PCH (PIC18) +DM .MAP format debug file
+F7 Select PC7 (PIC17) +DC Expanded .COD format debug file
+FS Select PCS (SX) +YX Optimization level x (0-9)
+ES Standard error file +T Create call tree (.TRE)
+EO Old error file format +A Create stats file (.STA)
-J Do not create PJT file -M Do not create symbol file

The xxx in the following are optional. If included it sets the file extension:

+LNxxx Normal list file +08xxx 8 bit Intel HEX output file
+LSxxx MPASM format list file +Owxxx 16 bit Intel HEX output file
+Loxxx Old MPASM list file +Obxxx Binary output file

C Compiler Reference Manual

Overview
-L Do not create list file -0 Do not create object file
+P Keep compile status window up after compile
+Pxx Keep status window up for xx seconds after compile
+PN Keep status window up only if there are no errors
+PE Keep status window up only if there are errors
+Z Keep scratch and debug files on disk after compile

[="..." Set include directory search path, for example:
I="c:\picc\examples;c:\picc\myincludes"

If no |I= appears on the command line the .PJT file will be used
to supply the include file paths.

#xxx="yyy" Set a global #define for id xxx with a value of yyy, example:
#debug="true"

+SETUP Install CCSC into MPLAB (no compile is done)

+V Show compiler version (no compile is done)
+Q Show all valid devices in database (no compile is done)
Examples:

CCSC +FM C:\PICSTUFF\TEST.C
CCSC +FM +P +T TEST.C

MPLAB Integration

The CCSC.EXE Windows program will work as a bridge from MPLAB to the C
compiler. Simply enter the following from Start|Run type:

CCSC +SETUP

This will configure MPLAB. When creating a new project select CCS as the
LANGUAGE TOOL SUITE. Then select the .HEX file and click on NODE
PROPERTIES. Here you need to select the compiler you want to use (PCB,
PCM, and PCH).

If your first compile is done from the CCS IDE then it will create a MPLAB project
file eliminating the need to create a new project and edit the nodes as described
above.

If your MPLAB version is older than 3.40, you will need to download the latest
version from Microchip's web page at: http://www.Microchip.com

C Compiler Reference Manual
Overview

Directories

The compiler will search the following directories for Include files.
* Directories listed on the command line
* Directories specified in the .PJT file
* The same directory as the source file

By default, the compiler files are put in C:\Program Files\PICC and the example
programs and all Include files are in C:\Program Files\PICC\EXAMPLES.

The compiler itself is a DLL file. The DLL files are in a DLL directory by default in
C:\Program Files\PICC\DLL. OId compiler versions may be kept by renaming
this directory.

File Formats

The compiler can output 8 bit hex, 16 bit hex, and binary files. Two listing formats
are available. Standard format resembles the Microchip tools and may be
required by some third-party tools. The simple format is easier to read. The
debug file may either be a Microchip .COD file or Advanced Transdata .MAP file.
All file formats and extensions are selected via the optionsifile formats window
on the DOS IDE and the compiler|options in the Windows IDE.

Direct Device Programming

The IDE has a program option in the main menu bar. When invoked, the IDE will
issue a command to start the user's device programmer. The commands are
specified in the Options|Programer Options window. The %H is replaced with
the HEX filename and %D is replaced with the device number. Put a ! at the end
if the command line if you would like a pause before returning to IDE. Only
programs that can be invoked by a command will work with this option.

Device Calibration Data

Some devices from Microchip have calibration data programmed into the
program area when shipped from the factory. Each part has its own unique data.
This poses some special problems during development. When an UV erasable
(windowed) part is erased, the calibration data is erased as well. Calibration data
can be forced into the chip during programming by using a #ROM directive with
the appropriate data.

C Compiler Reference Manual
Overview

The PCW package includes a utility program to help streamline this process.
When a new chip is purchased, the chip should be read into a hex file. Execute
the File|Read calibration data utility and select a name (.C) for this part. The
utility will create an Include File with specified name that will have the correct
#ROM directives for the part. During prototype development add a #Include
directive and change the name before each build to the part # that is about to be
programmed. For production (OTP parts) simply comment out the #Include.

Utility Programs

Siow

SIOW is a simple "dumb terminal" program that may be run on a PC to perform
input and output over a serial port. SIO is handy since it will show all incoming
characters. If the character is not a normally displayable character, it will show
the hex code.

DEVEDIT

DEVEDIT is a Windows utility (PCW only) that will edit the device database.
The compiler uses the device database to determine specific device
characteristics at compile time. This utility will allow devices to be added,
modified or removed. To add a device, highlight the closest equivalent chip and
click on ADD. To edit or delete, highlight the device and click on the appropriate
button.

PCONVERT

PCONVERT is a Windows utility (PCW only) that will perform conversions from
various data types to other types. For example, Floating Point decimal to 4
BYTE Hex. The utility opens a small window to perform the conversions. This
window can remain active during a PCW or MPLAB session. This can be useful
during debugging.

CCSC +Q
This will list all devices in the compiler database.

CCSC +FM +V
This will show the current compiler version. Replace +FM with +FB or +FH for
the other compilers.

C Compiler Reference Manual

PCW IDE
File Menu
PCW
File Project Edif Options Compile View Tools Help
| =] 5 e
lanual IC il
= I‘ C/ASM List Aoout
Symbol M a
Open O Caltee Contents
Save Open Al files Stafistics I}?: eXorci at cursor
Save As Pint Al files Data Sheet EGZTWE"OV
Save All Find text in project Jatid Fuses Edfor
Close Include Dirs... Real Tabs V.G"d Inferrupts Built in functions
Close Al Close Project Tab Size Binary File Preprocessor cmd:
Print Aufo Indent COD Debug File o cn% T
Printer Setup Wordétor keys 6 erators
exit Ediitor Font §gfemems
Syntox Highlighting Eockgiouna =
Undo Chl+Z Editor Colors Keywords Device Editor
0 Shift+Ctil+0 Cut shift+Del | | Recall Open Files [PreProcessor Device Selector
1 Shift+Ctri+1 Copy Ctil+C Toolbar... Text File Compoare
2 Snift+Cirl+2 Paste Shift+Ins | | File Formats... Numeric Converter
& e Copy from file Global Defines... Serial Port Monitor
5 Shift+Chi+5 Paste 1o fle Debugger/Programer... Disassembler
£ Snift+Cir+6 Find Ctrl+F Include Dirs... Exiract Cal Data View Recent Changes
ki Replace CHl+R Program Chip [é);)mc\l\ Tech Suppor
? St EjigMoich\ng Jor) FFZ %feﬁset —! aasees
I Toggle Bookmark -
% gﬂﬁ) «——| Goto Bookmark
2 Crire Next Window Ctl+N
3 CHi+3 Previous Window Ctrl+P
4 Chi+4
5 Ctl+5
6 Chl+6
7 CHl+7
8 Cfl+8
9 Ctl+9
New Creates a new file
Open Opens a file into the editor. If there are no other files open
then the project name is set to this files name. Ctrl-O is the
shortcut.
Save Saves the file currently selected for editing. Ctrl-S is the
shortcut.
Save As Prompts for a filename to save the currently selected file.
Save All All open files are saved to disk
Close Closes the file currently open for editing. Note that while a
file is open in PCW for editing no other program may access
the file. Shift F11 is the shortcut.
Close All Closes all files.
Print Prints the currently selected file.
Printer Setup Allows the selection of a printer and the printer settings.

Exit

Terminates PCW

C Compiler Reference Manual
PCW IDE

Project Menu

New

NEW PROJECT

Open

Open All Files

Creates a new project. A project may be created manually
or via a wizard. If created manually only a .PJT file is
created to hold basic project information. An existing .C main
file may be specified or an empty one may be created. The
wizard will allow the user to specify project parameters and
when complete a .C, .H and .PJT file are created. Standard
source code and constants are generated based on the
specified project parameters.

(Speed button or File|New Project) This command will bring
up a number of fill-in-the-blank forms about your new
project. RS232 I/0 and 12C characteristics, timer options,
interrupts used, A/D options, drivers needed and pin names
all may be specified in the forms. When drivers are
selected, required pins will be selected by the tool and pins
that can be combined will be. Final pins selections may be
edited by the user. After all selections are made the initial .c
and .h files are created with #defines, #includes and
initialization commands required for your project. This is a
fast way to start a new project. Once the files are created
you cannot return to the menus to make further changes.

A .PJT file is specified and the main source file is loaded.

A .PJT file is specified and all files used in the project are
opened. In order for this function to work the program must
have been compiled in order for the include files to become
known.

Find Text In Project Searches all files in a project for a given text string.

Print All Files

Include Dirs

Close Project

All files in the project are printed. In order for this function to
work the program must have been compiled in order for the
include files to become known.

Allows the specification of each directory to be used to
search for include files for just this project. This information
is saved in the .PJT file.

Closes all files associated with the current project.

C Compiler Reference Manual
PCW IDE

Edit Menu
Undo

Cut

Copy

Paste

Copy from File
Paste to File
Find

Replace

Next

Find matching } or)

Toggle Bookmark
Goto Bookmark
Next Window

Previous Window

Undoes the last deletion.

Moves the selected text from the file to the clipboard.
Copies the selected text to the clipboard.

Copies the clipboard contents to the cursor location.
Copies the contents of a file to the cursor location.
Pastes the selected text to a file.

Searches for a specified string in the file.

Replaces a specified string with a new string.

Performs another Find or Replace.

The text will be highlighted up to the corresponding } or
)- The editor will start counting the open and close curly
braces and highlight the closing item when they are
balanced. Simply place the cursor before or on the
element you need to find a match for and click, and the
match will be highlighted.

Sets a bookmark (0-9) at the cursor location.

Move the cursor to the specified bookmark (0-9).

Selects the next open file as the current file for editing.

Selects the previous open file as the current file for
editing.

Options Menu

Real tabs

When selected the editor inserts a tab character (ASCII
9) when the TAB key is pressed. When it is not selected
and the TAB key is pressed spaces are inserted up to
the next tab position.

Tab size

Auto indent

WordStar keys

Syntax Highlighting

Toolbar

Editor Font
Editor Colors

Recall Open Files

File Formats

Programmer options

Include Dirs

Global Definitions

C Compiler Reference Manual
PCW IDE

Determines the number of characters between tab
positions. Tabs allow you to set the number of space
equated by a tab and whether or not the tabs are
converted to spaces or left as tabs.

When selected and the ENTER is pressed the cursor
moves to the next line under the first character in the
previous line. When not selected the ENTER always
moves to the beginning of the next line.

When selected the editing keys are WordStar style.
WordStar commands will enable additional keystrokes
recognized by the editors. See EDITOR for more
information.

When checked the editor highlights in color C keywords
and comments.

Allows the selection of what menu items appear as
buttons on the toolbar.

Selects the editor font.

Selects the colors used for syntax highlighting.

When selected PCW will always start with the same files
open as were open when it last shut down. When not
selected PCW always starts with no files open.

Allows selection of the output file formats,

Allows the specification of the device programmer to be
used when the PROGRAM CHIP tool is selected.

Allows the specification of each directory to be used to
search for include files by default for newly created
projects. This has no effect on projects already created
(use Project|Include Dirs to change those).

Allows the setting of #defines to be used in compiling.
This is the same as having some #defines at the top of

C Compiler Reference Manual
PCW IDE

your program. This may be used for example to set
debugging defines without changing the code.

Compile Options

PCB/PCM (speed button or compile|PCx)
This command will compile your program. Use PCB for the 12-bit chips and
PCM for the 14-bit chips.

PCW Compile
Compiles the current project (name is in lower right) using the current compiler
(name is on the toolbar).

Debug File Options

Microchip COD Standard PIC debug file

RICE16 MAP Used only be older RICE16 S/W

COD no _ COD file with no _in id names

List Format Options

Simple A basic format with C code and ASM

Standard The MPASM standard format with machine code
Old Older MPASM format

Object file extension The file extension for a HEX file
List file extension The file extension for a list file

Object File Options

8 bit HEX 8 Bit Intel HEX file

16 bit HEX 16 bit Intel HEX file

Binary Straight binary (No fuse info)

Error File Options

Standard Current Microchip standard

Original Older Microchip standard

View Menu

C/ASM Opens the listing file in the read only mode. The file must

have been compiled to view the list file. If open this file will
be updated after each compile. The listing file shows each C

10

Symbol Map

MAP

Call Tree

C Compiler Reference Manual
PCW IDE

source line and the associated assembly code generated for
the line.

For Example:

............... delay ms(3);

0F2: MOVLW 05

OF3: MOVWF 08

OF4: DESCZ 08,F

OF5: GOTO OF4

............... .while input(pin_0));
OF6: BSF 0B, 3

Opens the symbol file in the read only mode. The file must
have been compiled to view the symbol file. If open this file
will be updated after each compile. The symbol map shows
each register location and what program variables are saved
in each location.

Displays the RAM memory map for the program last
compiled. The map indicates the usage of each RAM
location. Some locations have multiple definitions since
RAM is reused depending on the current procedure being
executed.

For Example:

08 @SCRATCH

09 @SCRATCH

(1).N TRIS_A

0B TRIS_B

oc MAIN.SCALE

oD MAIN.TIME

OE GET_SCALE.SCALE
OE PUTHEX.N

OE MAIN.@SCRATCH

Opens the tree file in the read only mode. The file must
have been compiled to view the tree file. If open this file will
be updated after each compile. The call tree shows each
function and what functions it calls along with the ROM and
RAM usage for each.

A (inline) will appear after inline procedures that begin with
@. After the procedure name is a number of the form s/n
where s is the page number of the procedure and n is the
number is locations of code storage is required. If S is ?

11

Statistics

Data Sheet

Binary file

COD Debug file

Valid Fuses

Valid Interrupts

Status Line

C Compiler Reference Manual
PCW IDE

then this was the last procedure attempted when the
compiler ran out of ROM space. RAM=xx indicates the total
RAM required for the function.

For Example:
Main 0/30
INIT 0/6
WAIT FOR HOST 0/23 (Inline)
DELAY US 0/12
SEND_DATA 0/65

Opens the stats file in the read only mode. The file must
have been compiled to view the stats file. If open this file will
be updated after each compile. The statistics file shows each
function, the ROM and RAM usage by file, segment and
name.

This tool will bring up Acrobat Reader with the manufacture
data sheet for the selected part. If data sheets were not
copied to disk then the CCS CD ROM or a manufacture CD
ROM must be inserted.

Opens a binary file in the read only mode. The file is shown
in HEX and ASCII.

Opens a debug file in the read only mode. The file is shown
in an interpreted form.

Shows a list of all valid keywords for the #fuses directive for
this device.

Shows a list of all valid keywords for the #int_xxxx directive
and enable/disable _interrupts for this device.

Click on the left hand side of the status line to GOTO a
specific line number.

Tools Menu

Device Editor

This tool allows the essential characteristics for each
supported processor to be specified. This tool edits a
database used by the compiler to control the compilation.
CCS maintains this database (Devices.dat) however users

12

Device selector

File Compare

Numeric Converter

Serial Port Monitor

Disassembler

Extract Cal Data

C Compiler Reference Manual
PCW IDE

may want to add new devices or change the entries for a
device for a special application. Be aware if the database is
changed and then the software is updated the changes will
be lost. Save your DEVICES.DAT file during an update to
prevent this.

This tool uses the device database to allow a parametric
selection of devices. By selecting key characteristics the
tool displays all eligible devices.

Compares two files. When source file is selected then a
normal line by line compare is done. When list file is
selected the compare may be set to ignore RAM and/or
ROM addresses to make the comparison more meaningful.
For example if an asm line was added at the beginning of
the program a normal compare would flag every line as
different. By ignoring ROM addresses then only the extra
line is flagged as changed. Two output formats are available.
One for display and one for files or printing.

A conversion tool to convert between decimal, hex and float.

An easy to use tool to connect to a serial port. This tool is
convenient to communicate with a target program over an
RS232 link. Data is shown in as ASCII characters and as
raw hex.

This tool will take as input a HEX file and will output ASM.
The ASM may be in a form that can be used as inline ASM.

This command will take a HEX file and generate an
assembly file so that selected sections can be extracted and
inserted into your C programs as inline assembly. Options
will allow the selection of the assembly format.

12 or 14 bit opcodes

* Address, C, MC ASM labels

* Hex or Binary

* Simple, ASM, C numbers

This tool will take as input a HEX file and will extract the
calibration data to a C include file. This may be used to
maintain calibration data for a UV erasable part. By

13

Program Chip

MPLAB

Internet

C Compiler Reference Manual
PCW IDE

including the include file in a program the calibration data will
be restored after re-burning the part.

This simply invokes device programmer software with the
output file as specified in the Compile\Options window. This
command will invoke the device programmer software of
your choice. Use the compile options to establish the
command line.

Invokes MPLAB with the current project. The project is
closed so MPLAB may modify the files if needed. When
MPLAB is invoked this way PCW stays minimized until
MPLAB terminates and then the project is reloaded.

These options invoke your WWW browser with the

requested CCS Internet page:

* View recent changes Shows version numbers and
changes for the last couple of months.

¢ e-mail technical support Starts your e-mail program with
CCS technical support as the To: address.

¢ Download updates Goes to the CCS download
page. Be sure to have your reference number ready.

e Data Sheets A list of various manufacture data
sheets for devices CCS has device drivers for (such as
EEPROMs, A/D converters, RTC...)

Help Menu

About

Contents

Index

Keyword at cursor

F12
Shift F12

Shows the version of the IDE and each installed compiler.
The help file table of contents.

The help file index.

Does an index search for the keyword at the cursor location.
Just press F1 to use this feature.

Bring up help index

Bring up editor help

14

C Compiler Reference Manual
PCW IDE

PCW Editor Keys

Cursor Movement

Left Arrow Move cursor one character to the left

Right Arrow Move cursor one character to the right

Up Arrow Move cursor one line up

Down Arrow Move cursor one line down

Ctrl Left Arrow Move cursor one word to the left

Ctrl Right Arrow Move cursor one word to the right

Home Move cursor to start of line

End Move cursor to end of line

Ctrl PgUp Move cursor to top of window

Ctrl PgDn Move cursor to bottom of window

PgUp Move cursor to previous page

PgDn Move cursor to next page

Ctrl Home Move cursor to beginning of file

Ctrl End Move cursor to end of file

Ctrl S Move cursor one character to the left

Ctrl D Move cursor one character to the right

CtrlE Move cursor one line up

Ctrl X ** Move cursor one line down

Ctrl A Move cursor one word to the left

CtrlF Move cursor one word to the right

ctlQS Move cursor to top of window

ctriQD Move cursor to bottom of window

CtrIR Move cursor to beginning of file

CtrlC * Move cursor to end of file

Shift ~ Where ~ is any of the above: Extend selected
area as cursor moves

15

C Compiler Reference Manual

PCW IDE

Editing Commands

F4 Select next text with matching () or {}
Ctrl # Goto bookmark # 0-9

Shift Ctrl # Set bookmark # 0-9

CtlQ# Goto bookmark # 0-9

CrlK# Set bookmark # 0-9

Ctrl W Scroll up

Ctrl Z * Scroll down

Del Delete the following character
BkSp Delete the previous character
Shift BkSp Delete the previous character
Ins Toggle Insert/Overwrite mode
Ctrl Z ** Undo last operation

Shift Ctrl Z Redo last undo

Alt BkSp Restore to original contents
Ctrl Enter Insert new line

Shift Del Cut selected text from file

Ctrl Ins Copy selected text

Shift Ins Paste

Tab Insert tab or spaces

Ctrl Tab Insert tab or spaces

Ctrl P ~ Insert control character ~ in text
Ctrl G Delete the following character
Crl T Delete next word

CtrlH Delete the previous character
CtrlY Delete line

ctriQy Delete to end of line

ctiQL Restore to original contents
Ctrl X ** Cut selected text from file
CtrlC ** Copy selected text

Ctrl V Paste

CtrlKR Read file at cursor location
Ctrl KW Write selected text to file
Ctrl-F ** Find text

Ctrl-R ** Replace text

F3 Repeat last find/replace

* Only when WordStar mode selected
** Only when WordStar mode is not selected

16

C Compiler Reference Manual
PCW IDE

Project Wizard
The new project wizard makes starting a new project easier.

After starting the Wizard you are prompted for the name for your new main c file.
This file will be created along with a corresponding .h file.

The tabbed notebook that is displayed allows the selection of various project
parameters. For example:

® General Tab -> Select the device and clock speed

e Communications tab --> Select RS232 ports

* |/O Pins tab --> Select you own names for the various pins

When any tab is selected you may click on the blue square in the lower right and
the wizard will show you what code is generated as a result of your selections in
that screen. After clicking OK all the code is generated and the files are opened
in the PCW editor.

This command will bring up a number of fill-in-the-blank forms about your new
project. RS232 I/O and 12C characteristics, timer options, interrupts used, A/D
options, drivers needed and pin names all may be specified in the forms. When
drivers are selected, required pins will be selected by the tool and pins that can
be combined will be. Final pins selections may be edited by the user. After all
selections are made an initial .c and .h files are created with #defines, #includes
and initialization commands require for your project. This is a fast way to start a
new project. Once the files are created you cannot return to the menus to make
further changes.

17

PRE-PROCESSOR

C Compiler Reference Manual

Pre-Processor

Pre-Processor Command Summary

Standard C Device Specification
#DEFINE IS STRING 24 | #DEVICE CHIP 25
#ELSE 28 | #ID NUMBER 27
#ENDIF 28 | #ID "filename" 27
#ERROR 26 | #ID CHECKSUM 27
#IF expr 28 | #FUSES options 27
#IFDEF id 29 | #TYPE type=type 41
#INCLUDE "FILENAME" 30 | Built-in Libraries
#INCLUDE <FILENAME> 30 | #USE DELAY CLOCK 42
#LIST 34 | #USE FAST 10 42
#NOLIST 34 | #USE FIXED 10 43
#PRAGMA cmd 38 | #USE I12C 43
#UNDEF id 41 | #USE RS232 44
Function Qualifier #USE STANDARD 10 45
#INLINE 31 | Memory Control
#INT DEFAULT 32 | #ASM 19
#INT GLOBAL 33 | #BIT id=const.const 22
#INT xxx 31 | #BIT id=id.const 22
#SEPARATE 40 | #BYTE id=const 22
Compiler Control #BYTE id=id 22
#CASE 23 | #LOCATE id=const 34
#OPT n 35 | #ENDASM 19
#PRIORITY 38 | #RESERVE 39
#ORG 35 | #ROM 39
#ZERO_RAM 46
Pre-Defined Identifier
__DATE_ _ 24
__DEVICE_ _ 26
__PCB__ 37
__PCM__ 37
PCH 38

18

C Compiler Reference Manual
Pre-Processor

Pre-Processor Directives

Pre-processor directives all begin with a # and are followed by a specific
command. Syntax is dependent on the command. Many commands do not allow
other syntactical elements on the remainder of the line. A table of commands
and a description is listed on the previous page.

Several of the pre-processor directives are extensions to standard C. C provides
a pre-processor directive that compilers will accept and ignore or act upon the
following data. This implementation will allow any pre-processor directives to
begin with #PRAGMA. To be compatible with other compilers, this may be used
before non-standard features.

Examples: Both of the following are valid
#INLINE
#PRAGMA INLINE

#ASM

#ENDASM

Syntax: #asm

code

#endasm

Elements: code is a list of assembly language instructions

Purpose: The lines between the #ASM and #ENDASM are treated as
assembly code to be inserted. These may be used
anywhere an expression is allowed. The syntax is
described on the following page. The predefined variable
RETURN may be used to assign a return value to a
function from the assembly code. Be aware that any C
code after the #ENDASM and before the end of the function
may corrupt the value.

Examples:

int find parity (int data) {

int count;
#asm

movlw 0x8
movwf count
movlw 0

19

loop:
xorwf data,w
rrf data,f

decfsz count,f
goto loop

movwf _return__
#endasm
}
Example Files: math.c
Also See: None
12 Bit and 14 Bit
ADDWEF f.d ANDWEF f d
CLRF f CLRW
COMF fd DECF f,d
DECFSZ f,d INCF f,d
INCFSZ f,d IORWEF f,d
MOVF f,d MOVPHW
MOVPLW MOVWEF f
NOP RLF f.d
RRF f,d SUBWF f,d
SWAPF f,d XORWEF f,d
BCF f,b BSF f,b
BTFSC fb BTFSS f,b
ANDLW k CALL k
CLRWDT GOTO k
IORLW k MOVLW k
RETLW k SLEEP
XORLW OPTION
TRIS k
14 Bit
ADDLW k
SUBLW k
RETFIE
RETURN

f may be a constant (file number) or a simple variable

d may be a constant (O or 1) orW or F
f.b may be a file (as above) and a constant (0-7) or it may be just a bit variable

reference.

20

C Compiler Reference Manual

Pre-Processor

k may be a constant expression

C Compiler Reference Manual

Pre-Processor

Note that all expressions and comments are in C like syntax.

PIC 18

ADDWEF f,d,a ADDWEFC f,d,a ANDWEF f.d,a
CLRF f,a COMF fd,a CPFSEQf,a
CPFSGT f,a CPFSLT f,a DECF fd,a
DECFSZ f,d,a DCFSNZ f,d,a INCF fd,a
INFSNZ f,d,a IORWEF f,d,a MOVF fd,a
MOVFFfs, fd MOVWEF f,a MULWE f,a
NEGF f,a RLCF fd,a RLNCF f,d,a
RRCF f,d,a RRNCFf,d,a SETF f,a
SUBFWB f,d,a SUBWEF f,d,a SUBWEFB f,d,a
SWAPFf,d,a TSTFSZ f,a XORWEF f,d,a
BCF fb,a BSF f,b,a BTFSC f,b,a
BTFSS f,b,a BTG f,d,a BC n

BN n BNC n BNN n
BNOV n BNZ n BOV n
BRA n BZ n CALL n,s
CLRWDT DAW - GOTO n
NOP - NOP - POP -
PUSH - RCALL n RESET -
RETFIEs RETLWk RETURN s
SLEEP - ADDLW k ANDLW k
IORLW k LFSR fk MOVLBk
MOVLW k MULLW k RETLWk
SUBLWk XORLW k TBLRD*
TBLRD*+ TBLRD*- TBLRD+*
TBLWT* TBLWT*+ TBLWT*-
TBLWT+*

21

C Compiler Reference Manual
Pre-Processor

#BIT
Syntax:

Elements:

Purpose:

Examples:

Example Files:

#bit id = x.y

id is a valid C identifier,
X is a constant or a C variable,
y is a constant 0-7.

A new C variable (one bit) is created and is placed in
memory at byte y and bit x. This is useful to gain access in
C directly to a bit in the processors special function register
map. It may also be used to easily access a bit of a
standard C variable.

#bit TOIF = 0Oxb.2

TOIF = 0; // Clear Timer 0 interrupt flag
int result;

#bit result _odd = result.0

if (result_odd)

None

Also See: #byte, #reserve, #locate
#BYTE
Syntax: #byte id = x
Elements: id is a valid C identifier,
X is a C variable or a constant
Purpose: If the id is already known as a C variable then this will locate

the variable at address x. In this case the variable type does
not change from the original definition. If the id is not know a
new C variable is created and placed at address x with the
type int (8 bit).

22

C Compiler Reference Manual
Pre-Processor

Warning: In both cases memory at x is not exclusive to this
variable. Other variables may be located at the same
location. In fact when x is a variable then id and x share the
same memory location.

Examples:
#byte status
#byte b port

o W

struct {

short int r_w;

short int c_d;

int unused : 2;

int data : 4; } a_port;
#byte a port = 5

a port.c d =1;
Example Files: None

Also See: #bit, #locate, #reserve

#CASE

Syntax: #case
Elements: None

Purpose: Will cause the compiler to be case sensitive. By default the
compiler is case insensitive.

Warning: Not all the CCS example programs, headers and
drivers have been tested with case sensitivity turned on.

Examples:
#case

int STATUS;

void func() {
int status;

STATUS = status; // Copy local status to global
}

23

C Compiler Reference Manual
Pre-Processor

Example Files: None

Also See: None

_ _DATE_ _

Syntax: __date

Elements: None

Purpose: This pre-processor identifier is replaced at compile time with
the date of the compile in the form: "30-MAY-01"

Examples:

printf ("Software was compiled on ") ;
printf(__ DATE);

Example Files: None

Also See: None

#DEFINE

Syntax: #define id text

or

#define id(x,y...) text

Elements: id is a preprocessor identifier, text is any text, x,y and so on
are local preprocessor identifiers, in this form there may be
one or more identifiers separated by commas.

Purpose: Used to provide a simple string replacement of the ID with
the given text from this point of the program and on.
In the second form (a C macro) the local identifiers are
matched up with similar identifiers in the text and they are
replaced with text passed to the macro where it is used.

Examples:

#define BITS 8

a=a+BITS; //same as a=a+8;

24

Example Files:

C Compiler Reference Manual
Pre-Processor

#define hi (x) (x<<4)
a=hi (a) ; //same as a=(a<<4) ;

None

Also See: #undef, #ifdef, #ifndef

#DEVICE

Syntax: #device chip options

Elements: chip is the name of a specific processor (like: PIC16C74),
To get a current list of supported devices:
START | RUN | CCSC +Q
Options are qualifiers to the standard operation of the
device. Valid options are:
®*=5 Use 5 bit pointers (for 12 bit parts)
**=8 Use 8 bit pointers (12 and 14 bit parts)
**=16 Use 16 bit pointers (for 14 bit parts)
* ADC=x Where x is the number of bits read_adc()

should return
* |ICD=TRUE Generates code compatible with Microchips
ICD debugging hardware.

Both chip and options are optional, so multiple #device lines
may be used to fully define the device. Be warned however
a #device with a chip will clear all previous #device and
#fuse settings.

Purpose: Defines the target processor. Every program must have
exactly one #define with a chip.

Examples:

Example Files:

Also See:

#device PIC1l6C74

#idevice PIC16C67 *=16

#device *=16 ICD=TRUE
f#idevice PIC1l6F877 *=16 ADC=10
All

read_adc()

25

C Compiler Reference Manual
Pre-Processor

_ _DEVICE_ _

Syntax: __device _ _

Elements: None

Purpose: This pre-processor identifier is defined by the compiler with
the base number of the current device (from a #device).
The base number is usually the number after the C in the
part number. For example the PIC16C622 has a base
number of 622.

Examples:
#if device_ ==71
setup port_a(ALL DIGITAL);
#fendif

Example Files: None

Also See: #device

#ERROR

Syntax: #error text

Elements: text is optional and may be any text

Purpose: Forces the compiler to generate an error at the location this
directive appears in the file. The text may include macros
that will be expanded for the display. This may be used to
see the macro expansion. The command may also be used
to alert the user to an invalid compile time situation.

Examples:

Example Files:

Also See:

#if BUFFER SIZE>16
fferror Buffer size is too large
#endif

#error Macro test: min(x,y)
None

None

26

C Compiler Reference Manual
Pre-Processor

#FUSES
Syntax: #fuse options
Elements: options vary depending on the device. A list of all valid
options has been put at the top of each devices .h file in a
comment for reference. The PCW device edit utility can
modify a particular devices fuses. The PCW pull down menu
VIEW | Valid fuses will show all fuses with their descriptions.
Some common options are:
e LP,XT,HS,RC
e WDT, NOWDT
e PROTECT, NOPROTECT
e PUT, NOPUT (Power Up Timer)
e BROWNOUT, NOBROWNOUT

Purpose: This directive defines what fuses should be set in the part
when it is programmed. This directive does not affect the
compilation; however, the information is put in the output
files. If the fuses need to be in Parallax format, add a PAR
option. SWAP has the special function of swapping (from
the Microchip standard) the high and low BYTES of non-
program data in the Hex file. This is required for some
device programmers.

Examples:

#fuses HS,NOWDT

Example Files: All

Also See: None

#ID

Syntax: #ID number 16

#1D number, number, number, number
#ID "filename"
#ID CHECKSUM

27

C Compiler Reference Manual
Pre-Processor

Elements: Number16 is a 16 bit number, number is a 4 bit number,
filename is any valid PC filename and checksum is a
keyword.

Purpose: This directive defines the ID word to be programmed into the
part. This directive does not affect the compilation but the
information is put in the output file.
The first syntax will take a 16-bit number and put one nibble
in each of the four ID words in the traditional manner. The
second syntax specifies the exact value to be used in each
of the four ID words.
When a filename is specified the ID is read from the file.
The format must be simple text with a CR/LF at the end.
The keyword CHECKSUM indicates the device checksum
should be saved as the ID.

Examples:
#id 0x1234
#id "serial.num"
#id CHECKSUM

Also See: None

#IF expr

#ELSE

#ENDIF

Syntax: #if expr

code
#else

code
#endif

Elements: expr is an expression with constants, standard operators
and/or preprocessor identifiers. Code is any standard c
source code.

Purpose: The pre-processor evaluates the constant expression and if

it is non-zero will process the lines up to the optional #ELSE
or the #ENDIF.

28

Examples:

Example Files:

C Compiler Reference Manual
Pre-Processor

Note: you may NOT use C variables in the #IF only
preprocessor identifiers created via #define.

#if MAX VALUE > 255
long value;

#else

int value;

#endif

ex_extee.c

Also See: #ifdef, #ifndef

#IFDEF

#IFNDEF

#ELSE

#ENDIF

Syntax: #ifdef id

code
#else
code
#endif
#ifndef id
code
#else
code
#endif

Elements: id is a preprocessor identifier, code is nay valid C source
code.

Purpose: This directive acts much like the #IF except that the
preprocessor simply checks to see if the specified ID is
known to the preprocessor (created with a #DEFINE).
#IFDEF checks to see if defined and #IFNDEF checks to see
if it is not defined.

Examples:

#define debug // Comment line out for no
debug

29

Example Files:

Also See:

C Compiler Reference Manual
Pre-Processor

#ifdef DEBUG

printf ("debug point a");
#endif

None

#Hif

#INCLUDE

Syntax:

Elements:

Purpose:

Examples:

Example Files:

Also See:

#include <filename>
or
#include "filename"

filename is a valid PC filename. It may include normal drive
and path information.

Text from the specified file is used at this point of the
compilation. If a full path is not specified the compiler will
use the list of directories specified for the project to search
for the file. If the filename is in "™ then the directory with the
main source file is searched first. If the filename is in <>
then the directory with the main source file s searched last.

#include <16C54.H>

#include <C:\INCLUDES\COMLIB\MYRS232.C>
All

None

30

C Compiler Reference Manual
Pre-Processor

#INLINE
Syntax: #inline
Elements: None
Purpose: Tells the compiler that the function immediately following the
directive is to be implemented INLINE. This will cause a
duplicate copy of the code to be placed everywhere the
function is called. This is useful to save stack space and to
increase speed. Without this directive the compiler will
decide when it is best to make procedures INLINE.
Examples:
#inline
swapbyte (int &a, int &b) {
int t;
t=a;
a=b;
b=t;
}
Example Files: None
Also See: #separate
#INT _xxxx
Syntax: #INT_AD Analog to digital conversion complete
#INT_ADOF Analog to digital conversion timeout
#INT_BUSCOL Bus collision
#INT_BUTTON Pushbutton
#INT_CCP1 Capture or Compare on unit 1
#INT_CCP2 Capture or Compare on unit 2
#INT_COMP Comparator detect
#INT_EEPROM write complete
#INT_EXT External interrupt
#INT_EXT1 External interrupt #1
#INT_EXT2 External interrupt #2
#INT_I2C 12C interrupt (only on 14000)
#INT_LCD activity
#INT_LOWVOLT Low voltage detected
#INT_PSP Parallel Slave Port data in

31

Elements:

Purpose:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Pre-Processor

#INT_RB Port B any change on B4-B7
#INT_RC Port C any change on C4-C7
#INT_RDA RS232 receive data available
#INT_RTCC Timer 0 (RTCC) overflow
#INT_SSP SPI or 12C activity
#INT_TBE RS232 transmit buffer empty

#INT_TIMERO Timer 0 (RTCC) overflow
#INT_TIMERA1 Timer 1 overflow
#INT_TIMER2 Timer 2 overflow
#INT_TIMERS3 Timer 3 overflow

None

These directives specify the following function is an interrupt
function. Interrupt functions may not have any parameters.
Not all directives may be used with all parts. See the
devices .h file for all valid interrupts for the part or in PCW
use the pull down VIEW | Valid Ints

The compiler will generate code to jump to the function when
the interrupt is detected. It will generate code to save and
restore the machine state, and will clear the interrupt flag.
The application program must call
ENABLE_INTERRUPTS(INT_xxxx) to initially activate the
interrupt along with the ENABLE_INTERRUPTS(GLOBAL)
to enable interrupts.

#int_ad
adc_handler() {
adc_active=FALSE;
}

See ex_sisr.c and ex_stwt.c for full example programs.

enable_interrupts(), disable_interrupts(), #int_default,
#int_global

#INT_DEFAULT

Syntax:

Elements:

#int_default

None

32

Purpose:

Examples:

Example Files:

C Compiler Reference Manual
Pre-Processor

The following function will be called if the PIC triggers an
interrupt and none of the interrupt flags are set. If an
interrupt is flagged, but is not the one triggered, the
#INT_DEFAULT function will get called.

#int default
default isr() {

printf ("Unexplained
interrupt\r\n");

}

None

Also See: #int_xxxx, #int_global

#INT_GLOBAL

Syntax: #int_global

Elements: None

Purpose: This directive causes the following function to replace the
compiler interrupt dispatcher. The function is normally not
required and should be used with great caution. When used,
the compiler does not generate start-up code or clean-up
code, and does not save the registers.

Examples:

Example Files:

Also See:

#int global

isr() { // Will be located at location 4
#asm

bsf isr flag

retfie

#endasm

}

None

#int_xxxx

33

C Compiler Reference Manual
Pre-Processor

#LIST

Syntax:
Elements:

Purpose:

Examples:

#list
None

#List begins inserting or resumes inserting source lines into
the .LST file after a #NOLIST.

#NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

Example Files: None

Also See: #nolist

#LOCATE

Syntax: #locate id=x

Elements: id is a C variable,
X is a constant memory address

Purpose: #LOCATE works like #BYTE however in addition it prevents
C from using the area.

Examples:

// This will locate the float variable at 50-53
// and C will not use this memory for other

// variables automatically located.

float x;

#locate x=0x50

Example Files: None

Also See: #byte, #bit, #reserve
#NOLIST

Syntax: #NOLIST

34

Elements:
Purpose:

Examples:

C Compiler Reference Manual
Pre-Processor

None

Stops inserting source lines into the .LST file (until a #LIST)

#NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

Example Files: None

Also See: #list

#OPT

Syntax: #OPT n

Elements: n is the optimization level 0-9

Purpose: The optimization level is set with this directive. The
directive applies to the entire program and may appear
anywhere in the file. Optimization level 5 will set the level to
be the same as the PCB,PCM,PCH stand-alone compilers.
The PCW default is 9 for full optimization. This may be used
to set a PCW compile to look exactly like a PCM compile for
example. It may also be used if an optimization error is
suspected to reduce optimization.

Examples:
#opt 5

Example Files: None

Also See: None

#ORG

Syntax: #org start, end

or
#org segment
or
#org start, end {}
or

35

Elements:

Purpose:

Examples:

C Compiler Reference Manual
Pre-Processor

#org start, end auto=0

start is the first ROM location (word address) to use, end is
the last ROM location, segment is the start ROM location
from a previous #org

This directive will fix the following function or constant
declaration into a specific ROM area. End may be omitted if
a segment was previously defined if you only want to add
another function to the segment.

Follow the ORG with a {} to only reserve the area with
nothing inserted by the compiler.

The RAM for a ORG'ed function may be reset to low memory
so the local variables and scratch variables are placed in low
memory. This should only be used if the ORG'ed function will
not return to the caller. The RAM used will overlap the RAM
of the main program. Add a AUTO=0 at the end of the
#ORG line.

#ORG O0x1E00, Ox1FFF

MyFunc () {

//This function located at 1E00
}

#ORG 0x1EO00

Anotherfunc () {

// This will be somewhere 1E00-1F00
}

#ORG 0x800, 0x820 {}
//Nothing will be at 800-820

#ORG 0x1C00, Ox1COF

CHAR CONST ID[10}= {"123456789"};
//This ID will be at 1CO00

//Note some extra code will
//proceed the 123456789

#ORG 0x1F00, Ox1FFO
Void loader () {

36

}

C Compiler Reference Manual

Pre-Processor

Example Files: loader.c

Also See: #rom

__PCB_ _

Syntax: _pcb

Elements: None

Purpose: The PCB compiler defines this pre-processor identifier. It
may be used to determine if the PCB compiler is doing the
compilation.

Examples:

#ifdef pcb
#device PICl6c54
#endif

Example Files: ex_sqw.c

Also See: __pcm__, pch_

__PCM_ _

Syntax: _pcm

Elements: None

Purpose: The PCM compiler defines this pre-processor identifier. It
may be used to determine if the PCM compiler is doing the
compilation.

Examples:

Example Files:

Also See:

#ifdef pcm
#idevice PICl6c71
#endif

ex_sqw.c

__pcb__, _pch__

37

C Compiler Reference Manual
Pre-Processor

__PCH_ _

Syntax: _pch_

Elements: None

Purpose: The PCH compiler defines this pre-processor identifier. It
may be used to determine if the PCH compiler is doing the
compilation.

Examples:

#ifdef _ _ PCH _ _
#device PIC18C452
#fendif

Example Files: None

Also See: _pcb_, pcm_

#PRAGMA

Syntax: #pragma cmd

Elements: cmd is any valid preprocessor directive.

Purpose: This directive is used to maintain compatibility between C
compilers. This compiler will accept this directive before any
other pre-processor command. In no case does this
compiler require this directive.

Examples:

#pragma device PIC16C54

Example Files: None

Also See: None

#PRIORITY

Syntax: #priority ints

Elements: ints is a list of one or more interrupts separated by commas.

38

Purpose:

Examples:

C Compiler Reference Manual
Pre-Processor

The priority directive may be used to set the interrupt priority.
The highest priority items are first in the list. If an interrupt is
active it is never interrupted. If two interrupts occur at
around the same time then the higher one in this list will be
serviced first.

#priority rtcc,rb

Example Files: None
Also See: #int_xxxx
#RESERVE
Syntax: #reserve address
or
#ireserve address, address, address
or
#reserve start.end
Elements: address is a ROM address, start is the first address and
end is the last address
Purpose: This directive allows RAM locations to be reserved from use
by the compiler. #RESERVE must appear after the
#DEVICE otherwise it will have no effect.
Examples:

#DEVICE PICl16C74
#RESERVE 0x60:0X6f

Example Files: None

Also See: #org

#ROM

Syntax: #rom address = {list};

Elements: address is a ROM word address, list is a list of words

separated by commas

39

Purpose:

Examples:

C Compiler Reference Manual
Pre-Processor

Allows the insertion of data into the .HEX file. In particular,
this may be used to program the '84 data EEPROM, as
shown in the following example.

Note that this directive does not prevent the ROM area from
being used. See #ORG to reserve ROM.

#rom 0x2100={1,2,3,4,5,6,7,8}

Example Files: None

Also See: #org

#SEPARATE

Syntax: #separate

Elements: None

Purpose: Tells the compiler that the procedure IMMEDIATELY
following the directive is to be implemented SEPARATELY.
This is useful to prevent the compiler from automatically
making a procedure INLINE. This will save ROM space but it
does use more stack space. The compiler will make all
procedures marked SEPARATE, separate, as requested,
even if there is not enough stack space to execute.

Examples:

Example Files:

Also See:

#separate

swapbyte (int *a, int *b) {
int t;

t=*a ;

*a=*b ;

*b=t;

}

None

#inline

40

C Compiler Reference Manual
Pre-Processor

#TYPE

Syntax: #type standard-type=size

Purpose: By default the compiler treats SHORT as one bit, INT as 8
bits and LONG as 16 bits. The traditional C convention is to
have INT defined as the most efficient size for the target
processor. This is why it is 8 bits on the PIC. In order to
help with code compatibility a #TYPE directive may be used
to will allow these types to be changed. #TYPE can redefine
these keywords.
Note that the commas are optional. Since #TYPE may
render some sizes inaccessible (like a one bit int in the
above) four keywords representing the four ints may always
be used: INT1, INT8, INT16 and INT32. Be warned CCS
example programs and include files may not work right if you
use #TYPE in your program.

Examples:
#TYPE SHORT=8, INT=16, LONG=32

Example Files: None

Also See: None

#UNDEF

Syntax: #undef id

Elements: id is a pre-processor id defined via #define

Purpose: The specified pre-processor ID will no longer have meaning
to the pre-processor.

Examples:

Example Files:

#if MAXSIZE<100
#undef MAXSIZE
#define MAXSIZE 100
#endif

None

41

C Compiler Reference Manual
Pre-Processor

Also See: #define

#USE DELAY

Syntax: #use delay (clock=speed)
or

#use delay(clock=speed, restart_wdt)
Elements: speed is a constant 1-100000000 (1 hz to 100 mhz)

Purpose: Tells the compiler the speed of the processor and enables
the use of the built-in functions: delay_ms() and delay_us().
Speed is in cycles per second. An optional restart WDT
may be used to cause the compiler to restart the WDT while

delaying.
Examples:

#use delay (clock=20000000)

#use delay (clock=32000, RESTART WDT)
Example Files: ex_sqw.c
Also See: delay_ms(), delay_us()

#USE FAST IO

Syntax: #use fast_io (port)
Elements: portis A-G
Purpose: Affects how the compiler will generate code for input and

output instructions that follow. This directive takes effect
until another #use xxxx_IO directive is encountered. The
fast method of doing 1/0 will cause the compiler to perform
I/0 without programming of the direction register. The user
must ensure the direction register is set correctly via

set_tris_X().
Examples:

#use fast_io(A)
Example Files: None

42

C Compiler Reference Manual
Pre-Processor

Also See: #use fixed_io, #use standard_io, set_tris_X()

#USE FIXED_IO
Syntax: #use fixed_io (port_outputs=pin, pin?)

Elements: port is A-G, pin is one of the pin constants defined in the
devices .h file.

Purpose: This directive affects how the compiler will generate code for
input and output instructions that follow. This directive takes
effect until another #use xxx_IO directive is encountered.
The fixed method of doing I/O will cause the compiler to
generate code to make an I/O pin either input or output
every time it is used. The pins are programmed according to
the information in this directive (not the operations actually
performed). This saves a byte of RAM used in standard 1/O.

Examples:
#use fixed io(a_outputs=PIN A2, PIN A3)
Example Files: None
Also See: #use fast_io, #use standard_io
#USE 12C
Syntax: #use i2c (options)
Elements: Options are separated by commas and may be:
* MASTER Set the master mode
e SLAVE Set the slave mode
* SCL=pin Specifies the SCL pin (pin is a bit
address)
* SDA=pin Specifies the SDA pin
* ADDRESS=nn Specifies the slave mode address
e FAST Use the fast 12C specification
e SLOW Use the slow 12C specification
e RESTART_WDT Restart the WDT while waiting in
12C_READ

* NOFORCE_SW Use hardware 12C functions.

43

Purpose:

Examples:

Example Files:

C Compiler Reference Manual
Pre-Processor

The 12C library contains functions to implement an 12C bus.
The #USE 12C remains in effect for the [2C_START,
[2C_STOP, I12C_READ, I12C_WRITE and 12C_POLL
functions until another USE 12C is encountered. Software
functions are generated unless the NOFORCE_SW is
specified. The SLAVE mode should only be used with the

built-in SSP.

#use I2C(master, sda=PIN BO, scl=PIN_Bl)

#use I2C(slave,sda=PIN C4,scl=PIN C3

addre§§=0xa0,NOF6hCE_SW)

ex_extee.c with 2464.c

Also See: i2c_read(), i2c_write()

#USE RS232

Syntax: #use rs232 (options)

Elements: Options are separated by commas and may be:

BAUD=x
XMIT=pin
RCV=pin
RESTART_WDT

¢ INVERT

* PARITY=X
* BITS =X

¢ FLOAT_HIGH

* ERRORS

¢ FLOAT_HIGH

Set baud rate to x

Set transmit pin

Set receive pin

Will cause GETC() to clear the WDT as
it waits for a character.

Invert the polarity of the serial pins
(normally not needed when level
converter, such as the AX232). May not
be used with the internal SCI.

Where xis N, E, or O.

Where x is 5-9 (5-7 may not be used
with the SCI).

The line is not driven high. This is used
for open collector outputs.

Used to cause the compiler to keep
receive errors in the variable
RS232_ERRORS and to reset errors
when they occur.

The line is not driven high. This is used
for open collector outputs.

44

Purpose:

C Compiler Reference Manual
Pre-Processor

e BRGH10K Allow bad baud rates on chips that
have baud rate problems.

e ENABLE=pin The specified pin will be high during
transmit. This may be used to enable
485 transmit.

This directive tells the compiler the baud rate and pins used
for serial 1/O. This directive takes effect until another
RS232 directive is encountered. The #USE DELAY directive
must appear before this directive can be used. This directive
enables use of built-in functions such as GETC, PUTC, and
PRINTF.

When using parts with built-in SCI and the SCI pins are
specified, the SCI will be used. If a baud rate cannot be
achieved within 3% of the desired value using the current
clock rate, an error will be generated.

The definition of the RS232_ERRORS is as follows:

No UART:

* Bit 7 is 9th bit for 9 bit data mode (get and put).
* Bit 6 set to one indicates a put failed in float high mode.

With a UART:

* Used only by get:
®* Copy of RCSTA register except:
Bit 0 is used to indicate a parity error.

Examples:

Example Files:

Also See:

#use rs232 (baud=9600, xmit=PIN A2,rcv=PIN_A3)
ex_sqw.c

getc(), putc(), printf()

#USE STANDARD_IO

Syntax:

Elements:

#USE STANDARD_IO (port)

port may be A-G

45

C Compiler Reference Manual
Pre-Processor

Purpose: This directive affects how the compiler will generate code for
input and output instructions that follow. This directive takes
effect until another #use xxx_io directive is encountered.
The standard method of doing 1/0 will cause the compiler to
generate code to make an I/O pin either input or output
every time it is used. On the 5X processors this requires
one byte of RAM for every port set to standard 1/0.

Standard_io is the default I/O method for all ports.

Examples:
#use standard io(A)
Example Files: None
Also See: #use fast_io, #use fixed_io
#ZERO_RAM
Syntax: #zero_ram
Purpose: This directive zero's out all of the internal registers that may
be used to hold variables before program execution begins.
Examples:
#zero_ram
void main() {
}
Example Files: None
Also See: None

46

C Compiler Reference Manual
Data Definitions

DATA DEFINITIONS
Data Types

The following tables show the syntax for data definitions. If the keyword
TYPEDEF is used before the definition then the identifier does not allocate space
but rather may be used as a type specifier in other data definitions. If the
keyword CONST is used before the identifier, the identifier is treated as a
constant. Constants must have an initializer and may not be changed at run-
time. Pointers to constants are not permitted.

SHORT is a special type used to generate very efficient code for bit operations
and I/O. Arrays of SHORT and pointers to SHORT are not permitted. Note: []
in the following tables indicate an optional item.

Data Declaration
[type-qualifier] [type-specifier] [declarator];

enum [id] {[id [= cexpr] }
I

One or more comma separated
struct [id] { [type-qualifier [[*] id cexpr[cexpr]]]}
or A A
Union | |
One or more Zero or more
semi-colon
separated

typedef [type-qualifier] [type-specifier] [declarator];

Type Qualifer

static Variable is globally active and initialized to 0
auto Variable exists only while the procedure is active
This is the default and AUTO need not be used.
extern Is allowed as a qualifier however, has no effect.
register Is allowed as a qualifier however, has no effect.

47

C Compiler Reference Manual
Data Definitions

Type-Specifier

int1 Defines a 1 bit number

int8 Defines an 8 bit number

int16 Defines a 16 bit number

int32 Defines a 32 bit number

char Defines a 8 bit character

float Defines a 32 bit floating point number
short By default the same as int1

int By default the same as int8

long By default the same as int16

double Is a reserved word but is not a supported data type.
void Indicates no specific type

All types, except float, by default are unsigned; however, maybe preceded by
unsigned or signed. Short and long may have the keyword INT following them
with no effect. Also see #TYPE.

declarator

[const]

] id [cexpr] [=init]
|

Zero or more comma
separated

The id after ENUM is created as a type large enough to the largest constant in
the list. The ids in the list are each created as a constant. By default the first id
is set to zero and they increment by one. If a =cepr follows an id that id will have
the value of the constant expression and the following list will increment by one.

The :cexpr after an id in a struct or union specifies the number of bits to use for
the id. This number may be 1-8. Multiple [] may be used for multiple dimension
arrays. Structures and unions may be nested. The id after STRUCT may be
used in another STRUCT and the {} is not used to reuse the same structure form

again.

Examples:

int a,b,c,d;
typedef int byte;
typedef short bit;

48

C Compiler Reference Manual
Data Definitions

bit e, f;
byte g[3]1[2];
char *h;
enum boolean ({false, true};
boolean j;
byte k = 5;
byte const WEEKS = 52;
byte const FACTORS [4] =
{8, 16, 64, 128};

struct data_record ({
byte a [2];
byte b : 2; /*2 bits */
byte ¢ : 3; /*3 bits*/
int d;

49

C Compiler Reference Manual
Function Definition

FUNCTION DEFINITION

Function Definition

The format of a function definition is as follows:

[qualifier] id ([type-specifier id]) {[stmt]}

Optional See Below Zero or more Zero or more semicolons
comma separated. separated. See Statements
See Data Types

The qualifiers for a function are as follows:
VOID

type-specifier

#separate

#inline

#int_..

When one of the above are used and the function has a prototype (forward
declaration of the function before it is defined) you must include the qualifier on
both the prototype and function definition.

A (non-standard) feature has been added to the compiler to help get around the
problems created by the fact that pointers cannot be created to constant strings.
A function that has one CHAR parameter will accept a constant string where it is
called. The compiler will generate a loop that will call the function once for each
character in the string.

Example:
void lcd putc(char c) {

i“

lcd putc ("Hi There.");

50

C Compiler Reference Manual
Function Definition

Reference Parameters

The compiler has limited support for reference parameters. This increases the
readability of code and the efficiency of some inline procedures. The following
two procedures are the same. The one with reference parameters will be
implemented with greater efficiency when it is inline.

funct_a(int*x,int*y) {
/*Traditional*/
if (*x!=5)
*y=*x+3;
}

funct_a(&a, &b);

funct_b(inté&x,inté&y) {
/*Reference params*/
if (x!=5)
y=x+3;
}

funct b(a,b);

51

C Compiler Reference Manual
C Statements and Expressions

C STATEMENTS AND EXPRESSIONS

Program Syntax

A program is made up of the following four elements in a file. These are covered
in more detail in the following paragraphs.

e Comment

* Pre-Processor Directive

¢ Data Definition

* Function Definition

Comment
A comment may appear anywhere within a file except within a quoted string.

Characters between the /* and */ are ignored. Characters after a // up to the end
of a line are also ignored.

52

C Compiler Reference Manual
C Statements and Expressions

Statements
STATEMENT EXAMPLE
if (expr) stmt; [else stmt;] if (x==25)
x=1;
else
x=x+1;
while (expr) stmt; while (get_rtec() '=0)
pute('n’);
do stmt while (expr); do {

putc(c=getc()) ;
} while (c!'=0);

for (expr1;expr2;expr3) stmt;

for (i=1;i<=10;++1i)

printf (“%ul\r\n”,6i);

switch (expr) {

switch (cmd) {

Zero or more semicolon separated

case cexpr: stmt; //one or more case casﬁrg a k_Printf (“emd 07);
[dﬁfau"'snnﬂ case 1: printf(“emd 17);
o break;
default: printf(“bad cmd”) ;
break; }

return [expr]; return (5);
goto label; goto loop;
label: stmt; loop: I++;
break; break;
continue; continue;
expr; i=1;
5 ;
{[stmt]} {a=1;

A b=1;

Note: Itemsin[] are optional

53

C Compiler Reference Manual
C Statements and Expressions

Expressions

Constants:
123 Decimal
0123 Octal
0x123 Hex
0b010010 Binary
X' Character
010’ Octal Character
"\xA5 Hex Character
\c' Special Character. Where \c is one of:
\n Line Feed- Same as \x0a
\r Return Fee - Same as \x0d
\t TAB- Same as \x09
\b Backspace- Same as \x08
\f Form Feed- Same as x0c
\a Bell- Same as \x07
\v Vertical Space- Same as \x0b
\? Question Mark- Same as \x3f
\" Single Quote- Same as \x60
\" Double Quote- Same as \x22
\\ A Single Backslash- Same as \x5c
"abcdef" String (null is added to the end)
Identifiers:
ABCDE Up to 32 characters beginning with a non-numeric. Valid
characters are A-Z, 0-9 and (underscore).
ID[X] Single Subscript
ID[X][X] Multiple Subscripts
ID.ID Structure or union reference (First ID is a variable)
ID->ID Structure or union reference (First ID is a pointer to variable)

54

C Compiler Reference Manual
C Statements and Expressions

Operators
+ Addition Operator
+= Addition assignment operator, x+=y, is the same as x=x+y
= Bitwise and assignment operator, x&=y, is the same as x=x&y
& Address operator
& Bitwise and operator
A= Bitwise exclusive or assignment operator, x*=y, is the same as
x=x"y
A Bitwise exclusive or operator
= Bitwise inclusive or assignment operator, xl=y, is the same as x=xly
I Bitwise inclusive or operator
2 Conditional Expression operator
- - Decrement
= Division assignment operator, x\=y, is the same as x=x/y
/ Division operator
== Equality
> Greater than operator
>= Greater than or equal to operator
++ Increment
* Indirection operator
I= Inequality
<<= Left shift assignment operator, x<<=y, is the same as x=x<<y
< Less than operator
<< Left Shift operator
<= Less than or equal to operator
&& Logical AND operator
! Logical negation operator
I Logical OR operator
Y%= Modules assignment operator x%=y, is the same as x=x%y
% Modules operator
= Multiplication assignment operator, x=y, is the same as x=x*y
* Multiplication operator
~ One's complement operator
>>= Right shift assignment, x>>=y, is the same as x=x>>y
>> Right shift operator
-> Structure Pointer operation
-= Subtraction assignment operator
- Subtraction operator
sizeof Determines size in bytes of operand

55

C Compiler Reference Manual
C Statements and Expressions

Operator Precedence

In descending precedence

(expr)

lexpr ~expr ++expr expr++ - -expr | expr- -
(type)expr *expr &value sizeof(type)
exprexpr expr/expr expr%expr

expr+expr expr-expr

expr<<expr expr>>expr

expr<expr expr<=expr expr>expr expr>=expr
expr==expr expr!=expr

expr&expr

expriexpr

expr | expr

expr&& expr

expr || expr

value ? expr: expr

value = expr | value+=expr | value-=expr

value*=expr value/=expr value%=expr

value>>=expr | value<<=expr | value&=expr

value*=expr | value|=expr expr, expr

56

BUILT-IN FUNCTIONS

C Compiler Reference Manual

Built-In Functions

Built-In Function List By Catego

RS232 1/0 Parallel Slave I/0
getc() 69 setup_psp() 108
putc() 90 psp_input_full() 89
gets() 70 psp_output_full() 89
puts() 91 psp_overflow() 89
printf() 88 Delays
kbhit() 78 delay_us() 64
set uart speed() 102 | delay ms() 64
12C 1/0 delay cycles() 63
i2¢_start() 72 Processor Controls
i2c_stop() 73 sleep() 117
i2C read 71 reset_cpu() 95
i2c_write() 74 restart_cause() 95
i2c_poll() 71 disable_interrupts() 65
Discrete 1/0 enable_interrupts() 66
output_low() 85 ext_int_edge() 67
output_high() 85 read_bank() 92
output_float() 84 write bank() 125
output_bit() 83 Bit Manipulation
input() 74 shift_right() 115
output_X() 86 shift_left() 114
input_X() 75 rotate right() 98
port b pullups() 87 rotate left() 97
set tris X() 101 | bit clear() 60
SPI two wire 1/0 bit_set() 61
setup_spi() 109 | bit test() 62
spi_read() 118 | swap() 123
spi_write() 119 | Capture/Compare/PWM
spi_data_is _in() 117 | setup ccpX() 104
set pwmX_ duty() 99

57

C Compiler Reference Manual
Built-In Functions

Built-In Function List By Category... Continued

Timers Standard C Char

setup_timer X() 109 | atoi() 59
set timer X() 100 | atol() 59
get timer X() 69 tolower() 124
setup_counters() 106 | toupper() 124
setup wdt() 113 | isalnum() 77
restart wdt() 96 isalpha() 77
A/D Conversion isamoung() 76
setup _adc ports() 103 | isdigit() 77
setup_adc() 103 | islower() 77
set _adc_channel() 103 | isspace() 77
read_adc() 91 isupper() 77
Analog Compare isxdigit() 77
setup_comparator() 105 | strlen() 120
Internal EEPROM strepy() 123
read_eeprom() 94 strncpy() 120
write_eeprom() 126 | strcemp() 120
read_program_eeprom() 94 stricmp() 120
write_program_eeprom() 126 | strncmp() 120
read_calibration() 93 strcat() 120
Standard C Math strstr() 120
abs() 59 strchr() 120
acos() 59 strrchr() 120
asin() 59 strtok() 120
atan() 59 strspn() 120
ceil() 62 strespn() 120
cos() 63 strpbrk() 120
exp() 67 striwr() 120
floor() 68 Standard C memory

labs() 79 memset() 83
log() 81 memcpy() 82
log10() 81 Voltage Ref

pow() 87 setup_vref() 113
sin() 116

sqrt() 119

tan() 116

58

C Compiler Reference Manual
Built-In Functions

ABS()
Syntax: value = abs(x)
Parameters: X is a signed 8, 16, or 32 bit int or a float.
Returns: Same type as the parameter.
Function: Computes the absolute value of a number.
Availability: All devices
Requires: #include <stdlib.h>
Examples:
signed int target,actual;
error = abs (target-actual) ;
Example Files: None
Also See: labs()
ACOS()
See: SIN()
ASIN()
See: SIN()
ATAN()
See: SIN()
ATOI()
ATOL()
Syntax: ivalue = atoi(string)

or
Ivalue = atol(string)

59

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

C Compiler Reference Manual
Built-In Functions

string is a pointer to a null terminated string of characters.

ivalue is an 8 bit int.
Ivalue is a 16 bit int.

Converts the string pointed too by ptr to int representation.
Accepts both decimal and hexadecimal argument. If the
result cannot be represented, the behavior is undefined.

All devices.

#include <stdlib.h>

char string[10];
int x;

strcpy (string,"123") ;
x = atoi(string);
// x is now 123

Example Files: input.c

Also See: printf()

BIT_CLEAR()

Syntax: bit_clear(var,bit)

Parameters: var may be a 8,16 or 32 bit variable (any Ivalue) bit is a
number 0-31 representing a bit number, 0 is the least
significant bit.

Returns: undefined

Function: Simply clears the specified bit (0-7, 0-15 or 0-31) in the
given variable. The least significant bit is 0. This function is
the same as: var &= ~(1<<bit);

Availability: All devices

Requires: None

60

C Compiler Reference Manual
Built-In Functions

Examples:
int x;
x=5;
bit clear(x,2);

// x is now 1
bit _clear(*11,7); // A crude way to disable ints

Example Files: None

Also See: bit_set(), bit_test()

BIT_SET()

Syntax: bit_set(var,bit)

Parameters: var may be a 8,16 or 32 bit variable (any Ivalue) bit is a
number 0-31 representing a bit number, 0 is the least
significant bit.

Returns: undefined

Function: Sets the specified bit (0-7, 0-15 or 0-31) in the given
variable. The least significant bit is 0. This function is the
same as: var |= (1<<bit);

Availability: All devices

Requires: Nothing

Examples:
int x;
x=5;
bit_set(x,3);

// x is now 13

bit _set(*6,1); // A crude way to set pin Bl high
Example Files: None
Also See: bit_clear(), bit_test()

61

C Compiler Reference Manual
Built-In Functions

BIT_TEST()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

value = bit_test (var,bit)

var may be a 8,16 or 32 bit variable (any Ivalue) bit is a
number 0-31 representing a bit number, 0 is the least
significant bit.

Oor1

Tests the specified bit (0-7,0-15 or 0-31) in the given
variable. The least significant bit is 0. This function is
much more efficient than, but otherwise the same as: ((var &
(1<<bit)) 1= 0)

All devices
Nothing
if(bit_test(x,3) || 'bit_test (x,1)){

//either bit 3 is 1 or bit 1 is 0
}

if (data!=0)

for (i=31;!bit_test(data,i);i-) ;
// i now has the most significant bit in data
// that is set to a 1

None

Also See: bit_clear(), bit_set()
CEIL()

Syntax: result = ceil (value)
Parameters: value is a float
Returns: A float

62

Function:

Availability:
Requires:

Examples:

C Compiler Reference Manual
Built-In Functions

Computes the smallest integral value greater than the
argument. Float(12.67) is 13.00.

All devices

#include <math.h>

// Calculate cost based on weight rounded
// up to the next pound

cost = ceil(weight) * DollarsPerPound;

Example Files: None
Also See: floor()
CcOos()

See: SIN()

DELAY_CYCLES()

Syntax:
Parameters:
Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

delay_cycles (count)

count - a constant or variable 1-255

undefined

Creates code to perform a delay of the specified number of
instruction clocks (1-255). An instruction clock is equal to
four oscillator clocks.

All devices

Nothing

delay cycles(1); // Same as a NOP

delay cycles(25); // At 20 mhz a 5us delay

None

63

C Compiler Reference Manual
Built-In Functions

Also See: delay_us(), delay_ms()

DELAY_MS()

Syntax: delay_ms (time)

Parameters: time - a variable 0-255 or a constant 0-65535

Returns: undefined

Function: This function will create code to perform a delay of the
specified length. Time is specified in milliseconds. This
function works by executing a precise number of instructions
to cause the requested delay. It does not use any timers. If
interrupts are enabled the time spent in an interrupt routine
is not counted toward the time.

Availability: All devices

Requires: #use delay

Examples:

Example Files:

#fuse delay (clock=20000000)
delay ms(2);
void delay seconds (int n) {
for (;n'=0; n- -)
delay ms(1000);
}

ex_sqw.c

Also See: delay_us(), delay_cycles(), #use delay
DELAY_US()

Syntax: delay_us (time)

Parameters: time - a variable 0-255 or a constant 0-65535

64

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

undefined

Creates code to perform a delay of the specified length.
Time is specified in microseconds. Shorter delays will be
INLINE code and longer delays and variable delays are calls
to a function. This function works by executing a precise
number of instructions to cause the requested delay. It does
not use any timers. If interrupts are enabled the time spent
in an interrupt routine is not counted toward the time.

All devices

#use delay

#use delay(clock=20000000)

do {

output_high (PIN_BO);
delay us(duty) ;
output_low (PIN_BO) ;
delay us(period-duty);
} while (TRUE) ;

ex_sqw.c

delay_ms(), delay_cycles(), #use delay

DISABLE_INTERRUPTS()

Syntax:
Parameters:
Returns:

Function:

disable_interrupts (level)
level - a constant defined in the devices .h file
undefined

Disables the interrupt at the given level. The GLOBAL level
will not disable any of the specific interrupts but will prevent
any of the specific interrupts, previously enabled to be
active. Valid specific levels are the same as are used in
#INT_xxx and are listed in the devices .h file. GLOBAL will
also disable the peripheral interrupts on devices that have it.
Note that it is not necessary to disable interrupts inside an

65

Availability:

Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

interrupt service routine since interrupts are automatically
disabled.

Device with interrupts (PCM and PCH)

Should have a #INT_xxxx, Constants are defined in the
devices .h file.

disable interrupts(GLOBAL); // all interrupts OFF
disable interrupts (INT RDA); // RS232 OFF

enable_ interrupts (ADC_DONE) ;
enable_interrupts (RB_CHANGE) ;

// these enable the interrupts

// but since the GLOBAL is disabled they are
not

// activated until the following statement:
enable_interrupts (GLOBAL) ;

ex_sisr.c, ex_stwt.c

enable_interrupts(), #int_xxxx

ENABLE_INTERRUPTS()

Syntax:
Parameters:
Returns:

Function:

Availability:

Requires:

Examples:

enable_interrupts (level)

level - a constant defined in the devices .h file

undefined

Enables the interrupt at the given level. An interrupt
procedure should have been defined for the indicated
interrupt. The GLOBAL level will not enable any of the
specific interrupts but will allow any of the specific interrupts
previously enabled to become active.

Device with interrupts (PCM and PCH)

Should have a #INT_xxxx, Constants are defined in the
devices .h file.

None

66

Example Files:

C Compiler Reference Manual
Built-In Functions

enable interrupts (GLOBAL) ;
enable_ interrupts (INT_TIMERO) ;
enable_interrupts (INT TIMERI) ;

ex_sisr.c, ex_stwt.c

Also See: disable_enterrupts(), #int_xxxx

EXP()

Syntax: result = exp (value)

Parameters: value is a float

Returns: A float

Function: Computes the exponential function of the argument. This is
e to the power of fvalue where e is the base of natural
logarithms. exp(1) is 2.7182818.

Availability: All devices.

Requires: MATH.H must be included.

Examples:

Example Files:

Also See:

// Calculate x to the power of y
x_power y = exp(y * log(x));

None

pow(), log(), log10()

EXT_INT_EDGE()

Syntax:

Parameters:

Returns:

ext_int_edge (source, edge)

source is a constant 0,1 or 2 for the PIC18 and 0 otherwise
source is optional and defaults to O edge is a constant
H TO L or L_TO_H representing "high to low" and "low to
high"

undefined

67

Function:

Availability:
Requires:

Examples:

Example Files:

C Compiler Reference Manual
Built-In Functions

Determines when the external interrupt is acted upon. The
edge may be L_ TO H or H TO_L to specify the rising or
falling edge.

Only devices with interrupts (PCM and PCH)

Constants are in the devices .h file

ext int_edge(2, L_TO H); // Set up PIC18 EXT2
ext_int edge(H TO L); // Sets up EXT

None

Also See: #int_ext, enable_interrupts(), disable_interrupts()

FLOOR()

Syntax: result = floor (value)

Parameters: value is a float

Returns: A float

Function: Computes the greatest integral value not greater than the
argument. Float(12.67) is 12.00.

Availability: All devices

Requires: MATH.H must be included.

Examples:

Example Files:

Also See:

// Find the fractional part of a value

frac = value - floor(value);
None

ceil()

68

C Compiler Reference Manual
Built-In Functions

GET_TIMERX()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

value=get_timer0() Same as:
value=get_timer1
value=get_timer2

value=get_timer3

value=get_rtcc()

A~~~ A~

)
)
)
)
None

Timers 1 and 3 return a 16 bit int.

Timer 2 returns a 8 bit int.

Timer 0 (AKA RTCC) returns a 8 bit int except on the PIC18
where it returns a 16 bit int.

Returns the count value of a real time clock/counter. RTCC
and TimerO are the same. All timers count up. When a
timer reaches the maximum value it will flip over to 0 and
continue counting (254, 255, 0, 1, 2...).

Timer O - All devices

Timers 1,2 - Most but not all PCM devices
Timer 3 - Only PIC18

Nothing

set_timer0(0) ;

while (get_timerO() < 200) ;

ex_stwt.c

Also See: set_timerx(), setup_timerx()
GETC()

GETCH()

GETCHAR()

Syntax: value = getc()

Parameters: None

Returns: A 8 bit character

69

Function:

Availability:
Requires:

Examples:

Example Files:

C Compiler Reference Manual
Built-In Functions

This function waits for a character to come in over the
RS232 RCV pin and returns the character. If you do not
want to hang forever waiting for an incoming character use
kbhit() to test for a character available. If a built-in USART is
used the hardware can buffer 3 characters otherwise GETC
must be active while the character is being received by the
PIC.

All devices

#use rs232

printf ("Continue (Y,N)?");
do {

answer=getch() ;
}while (answer!='Y' && answer!='N');

ex_stwt.c

Also See: putc(), kbhit(), printf(), #use rs232, input.c

GETS()

Syntax: gets (string)

Parameters: string is a pointer to a array of characters.

Returns: undefined

Function: Reads characters (using GETC()) into the string until a
RETURN (value 13) is encountered. The string is
terminated with a 0. Note that INPUT.C has a more versatile
GET_STRING function.

Availability: All devices

Requires: #use rs232

Examples:

char string[30];

printf ("Password: ") ;

70

Example Files:

C Compiler Reference Manual
Built-In Functions

gets (string) ;
if (strcmp (string,password))

printf ("OK") ;

None

Also See: getc(), get_string in input.c

I2C_POLL()

Syntax: i2c_poll()

Parameters: None

Returns: 1 (TRUE) or 0 (FALSE)

Function: The 12C_POLL() function should only be used when the
built-in SSP is used. This function returns TRUE if the
hardware has a received byte in the buffer. When a TRUE is
returned, a call to 12C_READ() will immediately return the
byte that was received.

Availability: Devices with built in 12C

Requires: #use i2c

Examples:
i2c_start(); // Start condition
i2c_write (0xcl); // Device address/Read
count=0;

Example Files:

while (count!=4) {
while('i2c_poll()) ;
buffer[count++]= i2c_read(); //Read Next

}
i2¢_stop(); // Stop condition

ex_slave.c

Also See: i2c_start, i2c_write, i2c_stop, i2c_poll
12C_READ()
Syntax: data = i2c_read();

or

71

Parameters:

Returns:

Function:

Requires:

Examples:

Example Files:

See Also:

C Compiler Reference Manual
Built-In Functions

data = i2c_read(ack);

ack -Optional, defaults to 1.
0 indicates do not ack.
1 indicates to ack.

data - 8 bit int

Reads a byte over the 12C interface. In master mode this
function will generate the clock and in slave mode it will wait
for the clock. There is no timeout for the slave, use
[2C_POLL to prevent a lockup. Use RESTART_WDT in the
#USE 12C to strobe the watch-dog timer in the slave mode
while waiting.

A #use i2c

i2c_start();
i2c_write(0Oxal);
datal = i2c_read();
data2 = i2c_read();
i2c_stop();

ex_extee.c with 2416.C

i2c_start, i2c_write, i2c_stop, i2c_poll

12C_START()
Syntax:
Parameters:
Returns:

Function:

Availability:

i2c_start()

None

undefined

Issues a start condition when in the 12C master mode. After
the start condition the clock is held low until 1I2C_WRITE() is
called. If another I12C_start is called in the same function
before an i2c_stop is called then a special restart condition is
issued. Note that specific 12C protocol depends on the slave
device.

All devices.

72

C Compiler Reference Manual
Built-In Functions

Requires: #use i2c
Examples:
i2c_start();
i2c_write (0xa0) ; // Device address
i2c_write(address); // Data to device
i2c_start(); // Restart
i2c_write(0Oxal); // to change data
direction
data=i2c_read(0) ; // Now read from slave
i2c_stop();
Example Files: ex_extee.c with 2416.c
Also See: i2c_stop, i2c_write, i2c_read, i2¢c_poll, #use i2¢c
I2C_STOP()
Syntax: i2c_stop()
Parameters: None
Returns: undefined
Function: Issues a stop condition when in the 12C is in master mode.
Availability: All devices
Requires: #use i2c
Examples:
i2c_start(); // Start condition
i2c_write (0xa0); // Device address
i2c_write(5); // Device command
i2c_write(12); // Device data
i2¢_stop(); // Stop condition
Example Files: ex_extee.c with 2416.c
Also See: i2c_start, i2c_write, i2c_read, i2c_poll, #use i2c

73

C Compiler Reference Manual
Built-In Functions

I2C_WRITE()

Syntax:
Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

i2c_write (data)
data is an 8 bit int

This function returns the ACK Bit.
0 means ACK, 1 means NO ACK.

Sends a single byte over the 12C interface. In master
mode this function will generate a clock with the data and in
slave mode it will wait for the clock from the master. No
automatic timeout is provided in this function. This function
returns the ACK bit. The LSB of the first write after a start
determines the direction of data transfer (0 is master to
slave). Note that specific 12C protocol depends on the slave
device.

All devices

#use i2c

long cmd;

i2c_start(); // Start condition
i2c_write (0xa0); // Device address
i2¢c_write (cmd) ; // Low byte of command
i2c_write(cmd>>8); // High byte of command
i2c_stop() ; // Stop condition

ex_extee.c with 2416.c

Also See: i2c_start(), i2c_stop, i2c_read, i2c_poll, #use i2c

INPUT()

Syntax: value = input (pin)

Parameters: Pin to read. Pins are defined in the devices .h file. The

actual value is a bit address. For example, port a (byte 5) bit
3 would have a value of 5*8+3 or 43. This is defined as
follows: #define PIN_A3 43

74

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

C Compiler Reference Manual
Built-In Functions

0 (or FALSE) if the pin is low,
1 (or TRUE) if the pin is high

This function returns the state of the indicated pin. The
method of I/O is dependent on the last USE *_1O directive.
By default with standard I/O before the input is done the data
direction is set to input.

All devices

Pin constants are defined in the devices .h file
while ('input(PIN Bl)); // waits for Bl to go
high

if (input(PIN_AO0))
printf ("AO0 is now high\r\n");

ex_pulse.c

Also See: input_x(), output_low(), output_high(), #use xxxx_io

INPUT_x()

Syntax: value = input_a()
value = input_b()
value = input_c()
value = input_d()
value = input_e()

Parameters: None

Returns: An 8 bit int representing the port input data.

Function: Inputs an entire byte from a port. The direction register is
changed in accordance with the last specified #USE *_10
directive. By default with standard I/O before the input is
done the data direction is set to input.

Availability: All devices

Requires: Nothing

75

C Compiler Reference Manual
Built-In Functions

Examples:
data = input b();
Example Files: None
Also See: input(), output_x(), #use xxxx_io
ISAMOUNG()
Syntax: result =isamoung (value, cstring)
Parameters: value is a character
cstring is a constant string
Returns: 0 (or FALSE) if value is not in cstring
1 (or TRUE) if value is in cstring
Function: Returns TRUE if a character is one of the characters in a
constant string.
Availability: All devices
Requires: Nothing
Examples:

char x;
if(isamoung(x,
"0123456789ABCDEFGHI JKLMNOPQRSTUVWXYZ"))
printf ("The character is wvalid");

Example Files: ctype.h

Also See: isalnum(), isalpha(), isdigit(), isspace(), islower(), isupper(),
isxdigit()

76

C Compiler Reference Manual
Built-In Functions

ISALNUM(char)
ISALPHA(char)
ISDIGIT(char)
ISLOWER(char)
ISSPACE(char)
ISUPPER(char)
ISXDIGIT(char)

Syntax: value = isalnum(datac)
value = isalpha(datac)
value = isdigit(datac)
value = islower(datac)
value = isspace(datac)
value = isupper(datac)
value = isxdigit(datac)

Parameters: datac is a 8 bit character

Returns: 0 (or FALSE) if datac dose not match the criteria, 1 (or
TRUE) if datac does match the criteria.

Function: Tests a character to see if it meets specific criteria as
follows:
isalnum(x) Xis 0..9,'A"..'"Z', or'a'..'?’
isalpha(x) Xis'A'.."Z'or'a'..'z’
isdigit(x) Xis'0"..'9'
islower(x) Xis'a'..'z'
isupper(x) Xis'A'..'"Z

isspace(x) X is a space
isxdigit(x) Xis'0'..'9",'A'..'F', or'a'..'f

Availability: All devices
Requires: ctype.h
Examples:

char id[20];
if(iéélpha(id[ol)) {

valid_ id=TRUE;
for (i=1;i<strlen (id) ;i++)

77

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

valid _id=valid_idé&s& isalnum(id[i]) ;
} else
valid id=FALSE;
None

isamoung()

KBHIT()
Syntax:
Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

value = kbhit()
None

0 (or FALSE) if getc() will need to wait for a character to
come in, 1 (or TRUE) if a character is ready for getc()

If the RS232 is under software control this function returns
TRUE if the start bit of a character is being sent on the
RS232 RCV pin. If the RS232 is hardware this function
returns TRUE is a character has been received and is
waiting in the hardware buffer for getc() to read. This
function may be used to poll for data without stopping and
waiting for the data to appear. Note that in the case of
software RS232 this function should be called at least 10
times the bit rate to ensure incoming data is not lost.

All devices

#use rs232

char timed getc() {
long timeout;

timeout_error=FALSE;
timeout=0;
while ('kbhité&é& (++timeout<50000)) // 1/2 second
delay us(10);
if (kbhit())
return (getc()) ;
else {
timeout_error=TRUE;
return (0) ;

78

Example Files:

C Compiler Reference Manual
Built-In Functions

}

None

Also See: getc(), #use rs232

LABS()

Syntax: result = labs (value)

Parameters: value is a 16 bit signed long int

Returns: A 16 bit signed long int

Function: Computes the absolute value of a long integer.
Availability: All devices.

Requires: STDLIB.H must be included.

Examples:

if (labs(target_value - actual_value) > 500)
printf ("Error is over 500
points\r\n") ;

Example Files: None

Also See: abs()

LCD_LOAD()

Syntax: Icd_load (buffer_pointer, offset, length);

Parameters: buffer_pointer points to the user data to send to the LCD,
offset is the offset into the LCD segment memory to write
the data, length is the number of bytes to transfer.

Returns: undefined

Function: Will load length bytes from buffer_pointer into the 923/924

LCD segment data area beginning at offset (0-15).

79

Availability:

Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

Ilcd_symbol provides an easier way to write data to the
segment memory.

This function is only available on devices with LCD drive
hardware.

Constants are defined in the devices .h file.

lcd load(buffer, 0, 16);
ex_92lcd.c

lcd_symbol(), setup_lcd()

LCD_SYMBOL()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

lcd_symbol (symbol, b7 _addr, b6_addr, b5 _addr,
b4_addr, b3_addr, b2_addr, b1_addr, b0_addr);

symbol is a 8 bit constant.
bX_addr is a bit address representing the segment location
to be used for bit X of symbol.

undefined

Loads 8 bits into the segment data area for the LCD with
each bit address specified. If bit 7 in symbol is set the
segment at B7_addr is set, otherwise it is cleared. The
same is true of all other bits in symbol. The B7_addr is a bit
address into the LCD RAM.

This function is only available on devices with LCD drive
hardware.

Constants are defined in the devices .h file.

byte CONST DIGIT_MAP[10]=
{0X90,0XB7,0X19,0X36,0X54,0X50,0XB5,0X24};

#define DIGIT_1_CONFIG \
COMO+2,COMO+4,COMO5 ,COM2+4,COM2+1, \

80

Example Files:

C Compiler Reference Manual
Built-In Functions

COM1+4,COM1+5

for(i=1l; i<=9; ++i) {

LCD_SYMBOL (DIGIT MAP[i] ,DIGIT 1 CONFIG) ;
delay ms(1000) ;

}

ex_92lcd.c

Also See: setup_lcd(), lcd_load()

LOG()

Syntax: result = log (value)

Parameters: value is a float

Returns: A float

Function: Computes the natural logarithm of the float x. If the
argument is less than or equal to zero or too large, the
behavior is undefined.

Availability: All devices

Requires: MATH.H must be included.

Examples:

Example Files:

lnx = log(x);

None

Also See: log10(), exp(), pow()
LOG10()

Syntax: result = 1og10 (value)
Parameters: value is a float
Returns: A float

81

Function:

Availability:
Requires:

Examples:

Example Files:

C Compiler Reference Manual
Built-In Functions

Computes the base-ten logarithm of the float x. If the
argument is less than or equal to zero or too large, the
behavior is undefined.

Al devices

#include <math.h>

db = loglO(read adc()*(5.0/255))*10;

None

Also See: log(), exp(), pow()

MEMCPY()

Syntax: memcpy (destination, source, n)

Parameters: destination is a pointer to the destination memory, source
is a pointer to the source memory, n is the number of bytes
to transfer

Returns: undefined

Function: Copies n bytes from source to destination in RAM. Be aware
that array names are pointers where other variable names
and structure names are not (and therefore need a & before
them).

Availability: All devices.

Requires: Nothing

Examples:

Example Files:

Also See:

memcpy (&structA, &structB,sizeof (structd));
memcpy (arrayA,arrayB,sizeof (arrayd));
memcpy (&structA, &databyte, 1);

None

strcpy(), memset()

82

C Compiler Reference Manual
Built-In Functions

MEMSET()

Syntax: memeset (destination, value, n)

Parameters: destination is a pointer to memory, value is a 8 bit int, nis a
8 bit int.

Returns: undefined

Function: Sets n bytes of memory at destination with the value. Be
aware that array names are pointers where other variable
names and structure names are not (and therefore need a &
before them).

Availability: All devices

Requires: Nothing

Examples:
memset (arrayA, 0, sizeof (arrayd));
memset (arrayB, '?', sizeof (arrayB));
memset (&structA, OxFF, sizeof (structd));

Example Files: None

Also See: memcpy()

OUTPUT _BIT()

Syntax: output_bit (pin, value)

Parameters: Pins are defined in the devices .h file. The actual number is
a bit address. For example, port a (byte 5) bit 3 would have
a value of 5*8+3 or 43. This is defined as follows: #define
PIN_A343. Valueisa1ora0.

Returns: undefined

Function: Outputs the specified value (0 or 1) to the specified 1/0O pin.
The method of setting the direction register is
determined by the last #USE *_ IO directive.

Availability: All devices

83

Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

Pin constants are defined in the devices .h file

output_bit(PIN _BO, 0);
// Same as output_low(pin_BO);

output_bit(PIN_BO,input(PIN Bl));
// Make pin BO the same as Bl

output_bit(PIN_BO,
shift left(&data,l,input(PIN_B1l)));
// Output the MSB of data to
// BO and at the same time
// shift Bl into the LSB of data

ex_extee.c with 9356.c

input(), output_low(), output_high(), output_float(),
output_x(), #use xxxx_io

OUTPUT_FLOAT()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

output_float (pin)

Pins are defined in the devices .h file. The actual value is a
bit address. For example, port a (byte 5) bit 3 would have a
value of 5*8+3 or 43. This is defined as follows: #define
PIN_A3 43

undefined

Sets the specified pin to the input mode. This will allow the
pin to float high to represent a high on an open collector type
of connection.

All devices

Pin constants are defined in the devices .h file

if((data & 0x80)==0)
output_low(pin_A0) ;
else

84

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

output_float(pin_AO0) ;
None

input(), output_low(), output_high(), output_bit(), output_x(),
#use xxxx_io

OUTPUT_HIGH()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

output_high (pin)

Pin to read. Pins are defined in the devices .h file. The
actual value is a bit address. For example, port a (byte 5) bit
3 would have a value of 5*8+3 or 43. This is defined as
follows: #define PIN_A3 43

undefined

Sets a given pin to the high state. The method of I/O used is
dependent on the last USE *_IO directive.

All devices

Pin constants are defined in the devices .h file

output_high (PIN_A0);
ex_sqw.c

input(), output_low(), output_float(), output_bit(), output_x(),
#use xxxx_io

OUTPUT_LOW()

Syntax:

Parameters:

Returns:

output_low (pin)

Pins are defined in the devices .h file. The actual value is a
bit address. For example, port a (byte 5) bit 3 would have a
value of 5*8+3 or 43. This is defined as follows: #define
PIN_A3 43

undefined

85

Function:

Availability:
Requires:

Examples:

Example Files:

C Compiler Reference Manual
Built-In Functions

Sets a given pin to the ground state. The method of I/O
used is dependent on the last USE *_10 directive.
All devices

Pin constants are defined in the devices .h file

output low (PIN_AO0);

ex_sqw.c

Also See: input(), output_high(), output_float(), output_bit(), output_x(),
#use xxxx_io

OUTPUT_A()

OUTPUT_B()

OUTPUT_C()

OUTPUT_D()

OUTPUT_E()

Syntax: output_a (value)
output_b (value)
output_c (value)
output_d (value)
output_e (value)

Parameters: value is a 8 bit int

Returns: undefined

Function: Output an entire byte to a port. The direction register is
changed in accordance with the last specified #USE *_10
directive.

Availability: All devices, however not all devices have all ports (A-E).

Requires: Nothing

Examples:

OUTPUT B (0x£0) ;

86

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions
None

input(), output_low(),
output_bit(), #use xxxx_io

output_high(), output_float(),

PORT_B_PULLUPS()

Syntax:
Parameters:
Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

port_b_pull-ups (value)
value is TRUE or FALSE
undefined

Sets the port B input pullups. TRUE will activate, and a
FALSE will deactivate.

Only 14 and 16 bit devices (PCM and PCH). (Note: use
SETUP_COUNTERS on PCB parts).

Nothing

port_b pullups (FALSE) ;

ex_lcdkb.c with kbd.c

Also See: input(), input_x(), output_float()
POW()

Syntax: f = pow (x,y)

Parameters: x and y and of type float
Returns: A float

Function: Calculates X to the Y power.
Availability: All Devices

Requires: #include <math.h>

87

C Compiler Reference Manual
Built-In Functions

Examples:
area = (size,3.0);

Example files: None

Also See: Nothing

PRINTF()

Syntax: printf (string)

or
printf (cstring, values...)
or
printf (fname, cstring, values...)

Parameters: String is a constant string or an array of characters null
terminated. Values is a list of variables separated by
commas, fname is a function name to be used for outputting
(default is putc is none is specified).

Returns: undefined

Function: Outputs a string of characters to either the standard RS-232
pins (first two forms) or to a specified function. Formatting is
in accordance with the string argument. When variables are
used this string must be a constant. The % character is
used within the string to indicate a variable value is to be
formatted and output. A %% will output a single %.
Formatting rules for the % are on the following page.

Format: The format takes the generic form %wt where w is optional

and may be 1-9 to specify how many characters are to be
outputted, or 01-09 to indicate leading zeros or 1.1 to 9.9 for
floating point. tis the type and may be one of the following:

e C Character

Lx Hex long int (lower case)
LX Hex long int (upper case)

e U Unsigned int

e X hexint (lower case output)
e X Hexint (upper case output)
e D Signedint

* %e Float in exp format

* %f Float

[)

[)

88

Availability:
Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

* |lu unsigned decimal long
* |d signed decimal long
* % Justa%

Example formats:
Specifer Value=0x12 Value=0xfe

%03u 018 254
%u 18 254
%?2u 18 *

%5 18 254
%d 18 -2
%x 12 Fe
%X 12 FE
%4X 0012 OOFE

* Result is undefined - Assume garbage.
All devices

#use rs232 (unless fname is used)

byte x,y,z;

printf ("HiThere") ;

printf ("RTCCValue=>%2x\n\r" ,get_rtcc())
printf ("%2u %X %4X\n\r",x,y,z);

printf (LCD_PUTC, "n=%v",n);

ex_admm.c, ex_lcdkb.c

atoi(), puts(), putc()

PSP_OUTPUT_FULL()
PSP_INPUTFULL()
PSP_OVERFLOW()

Syntax:

Parameters:

Returns:

result = psp_output_full()
result = psp_input_full()
result = psp_overflow()
None

A0 (FALSE) or 1 (TRUE)

89

Function:

Availability:

Requires:

Examples:

Example Files:

C Compiler Reference Manual
Built-In Functions

These functions check the Parallel Slave Port (PSP) for the
indicated conditions and return TRUE or FALSE.

This function is only available on devices with PSP hardware
on chips.

Nothing

while (psp_output_full()) ;
psp_data = command;
while (!psp_input_full()) ;
if (psp_overflow())

error = TRUE;
else

data = psp_data;

None

Also See: setup_psp()

PUTC()

PUTCHAR()

Syntax: putc (cdata)
putchar (cdata)

Parameters: cdata is a 8 bit character

Returns: undefined

Function: This function sends a character over the RS232 XMIT pin. A
#USE RS232 must appear before this call to determine the
baud rate and pin used. The #USE RS232 remains in effect
until another is encountered in the file.

Availability: All devices

Requires: #use rs232

Examples:
putc('*');

for (i=0; i<10; i++)
putc (buffer[i]) ;

90

Example Files:

C Compiler Reference Manual
Built-In Functions

putc (13);

None

Also See: getc(), printf(), #use rs232

PUTS()

Syntax: puts (string)

Parameters: string is a constant string or a character array (null-
terminated)

Returns: undefined

Function: Sends each character in the string out the RS232 pin using
PUTC(). After the string is sent a RETURN (13) and LINE-
FEED (10) are sent.
In general printf() is more useful than puts().

Availability: All devices

Requires: #use rs232

Examples:
puts(" ---————---- ")
puts(" | HI ")
puts(" ---————---- ")

Example Files: None

Also See: printf(), gets()

READ_ADC()

Syntax: value = read_adc()

Parameters: None

Returns: Either a 8 or 16 bit int depending on #DEVICE ADC=

directive.

91

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

This function will read the digital value from the analog to
digital converter. Calls to setup_adc(), setup_adc_ ports()
and set adc_channel() should be made sometime before
this function is called. The range of the return value
depends on number of bits in the chips A/D converter and
the setting in the #DEVICE ADC-= directive as follows:

#DEVCE 8 bit 10 bit 11 bit 16 bit
ADC=8 00-FF 00-FF 00-FF 00-FF
ADC=10 X 0-3FF X X
ADC=11 X X 0-7FF X

ADC=16 0-FFOO O0-FFCO 0-FFEO O0-FFFF
Note: x- not defined

This function is only available on devices with A/D hardware.

Nothing

setup_adc(ADC_CLOCK_INTERNAL);
setup_adc_ports(ALL_ANALOG) ;
set_adc_channel(1);
while (input(PIN_BO)) {

delay ms(5000);

value = read_adc();

printf ("A/D value = %2x\n\r", value);
}

ex_admm.c, ex_14kad.c

setup_adc(), set_adc_channel(), setup_adc_ports(), #device

READ_BANK()

Syntax:

Parameters:

Returns:

Function:

value = read_bank (bank, offset)

bank is the physical RAM bank 1-3 (depending on the
device), offset is the offset into user RAM for that bank
(starts at 0),

8 bit int

Read a data byte from the user RAM area of the specified

memory bank. This function may be used on some devices
where full RAM access by auto variables is not efficient.

92

Availability:

Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

For example on the PIC16C57 chip setting the pointer size
to 5 bits will generate the most efficient ROM code however
auto variables can not be above 1Fh. Instead of going to 8
bit pointers you can save ROM by using this function to write
to the hard to reach banks. In this case the bank may be 1-3
and the offset may be 0-15.

All devices but only useful on PCB parts with memory over
1Fh and PCM parts with memory over FFh.

Nothing

// See write bank example to see how we got the
data
// Moves data from buffer to LCD

i=0;

do {
c=read bank (1,i++);
if (c!'=0x13)

led_putc(c) ;
} while (c!'=0x13);

None

write_bank(), and the "Common Questions and Answers"
section for more information.

READ_CALIBRATION()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

value = read_calibration (n)
n is an offset into calibration memory beginning at 0
An 8 bit byte

The read_calibration function reads location "n" of the
14000-calibration memory.

This function is only available on the PIC14000.

Nothing

93

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

fin = read_calibration(16) ;
ex_14kad.c with 14kcal.c

Nothing

READ_EEPROM()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

value = read_eeprom (address)
address is an 8 bit int
An 8 bit int

Reads a byte from the specified data EEPROM address.
The address begins at 0 and the range depends on the part.

This command is only for parts with built-in EEPROMS.

Nothing

#define LAST VOLUME 10
volume = read EEPROM (LAST VOLUME) ;

ex_intee.c

write_eeprom()

READ_PROGRAM_EEPROM ()

Syntax:
Parameters:
Returns:
Function:
Availability:

Requires:

value = read_program_eeprom (address)

address is 16 bits on PCM parts and 32 bits on PCH parts,
16 bits on PCM parts and 8 bits on PCH parts.

Reads data from the program memory.

Only devices that allow reads from program memory.

Nothing

94

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

checksum = 0;
for (i=0;i<8196;i++)

checksum”“=read program_eeprom(i) ;
printf ("Checksum is %2X\r\n", checksum) ;

None

write_program_eeprom(), write_eeprom(), read_eeprom()

RESET_CPU()
Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

reset_cpu()

None

This function never returns

This is a general purpose device reset. It will jump to
location 0 on PCB and PCM parts and also reset the
registers to power-up state on the PIC18.

All devices.

Nothing

if (checksum!=0)
reset _cpu() ;

None

Nothing

RESTART_CAUSE()

Syntax:
Parameters:

Returns:

value = restart_cause()
None
A value indicating the cause of the last processor reset. The

actual values are device dependent. See the device .h file
for specific values for a specific device. Some example

95

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

values are: WDT_FROM_SLEEP WDT_TIMEOUT,
MCLR_FROM_SLEEP and NORMAL_POWER_UP.

This function will return the reason for the last processor
reset.

All devices

Constants are defined in the devices .h file.

switch (restart_cause()) {
case WDT_FROM SLEEP:
case WDT_TIMEOUT:
handle_error();

}

None

restart_wdt(), reset_cpu()

RESTART_WDT/()

Syntax:
Parameters:
Returns:

Function:

restart_wdt()

None

undefined

Restarts the watchdog timer. If the watchdog timer is
enabled, this must be called periodically to prevent the

processor from resetting.

The watchdog timer is used to cause a hardware reset if the
software appears to be stuck.

The timer must be enabled, the timeout time set and
software must periodically restart the timer. These are done
differently on the PCB/PCM and PCH parts as follows:

PCB/PCM PCH
Enable/Disable #fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart_wdt() restart_wdt()

96

Availability:
Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

All devices
#fuses
#fuses WDT // PCB/PCM example
// See setup wdt for a PIC1S8
example
main () {

setup_wdt (WDT_2304MS) ;

while (TRUE) {
restart_wdt();
perform_activity()

}

None

#fuses, setup_wdt()

ROTATE_LEFT()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

rotate_left (address, bytes)

address is a pointer to memory, bytes is a count of the
number

of bytes to work with.

undefined

Rotates a bit through an array or structure. The address
may be an array identifier or an address to a byte or
structure (such as &data). Bit O of the lowest BYTE in RAM
is considered the LSB.

All devices.

Nothing

x = 0x86;
rotate_left(&x, 1);
// x is now 0x0d

None

97

C Compiler Reference Manual
Built-In Functions

Also See: rotate_right(), shift_left(), shift_right()

ROTATE_RIGHT()

Syntax: rotate_right (address, bytes)
Parameters: address is a pointer to memory, bytes is a count of the
number

of bytes to work with.
Returns: undefined

Function: Rotates a bit through an array or structure. The address
may be an array identifier or an address to a byte or
structure (such as &data). Bit O of the lowest BYTE in RAM
is considered the LSB.

Availability: All devices
Requires: Nothing

Examples:
struct {
int cell 1 :
int cell_2 :
int cell 3 :
int cell 4 : } cells;
rotate_right(&cells, 2);
rotate_right(&cells, 2);
rotate_right(&cells, 2);
rotate_right(&cells, 2);
// cell 1->4, 2->1, 3->2 and 4-> 3

4;
4;
4;
4;

Example Files: None

Also See: rotate_right(), shift_left(), shift_right()

SET_ADC_CHANNEL()

Syntax: set_adc_channel (chan)

Parameters: chan is the channel number to select. Channel numbers
start at 0 and are labeled in the data sheet ANO, AN1...

98

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

undefined

Specifies the channel to use for the next READ_ADC call.
Be aware that you must wait a short time after changing the
channel before you can get a valid read. The time varies
depending on the impedance of the input source. In general
10us is good for most applications. You need not change
the channel before every read if the channel does not
change.

This function is only available on devices with A/D hardware.

Nothing

set_adc_channel (2) ;
delay us(10);
value = read_adc();

ex_admm.c

read_adc(), setup_adc(), setup_adc_ports()

SET_PWM1_DUTY()
SET_PWM2_DUTY()

Syntax:

Parameters:
Returns:

Function:

set_pwm1_duty (value)
set_pwm2_duty (value)

value may be a 8 or 16 bit constant or variable.
undefined

Writes the 10-bit value to the PWM to set the duty. An 8-bit
value may be used if the least significant bits are not
required. If value is an 8 bit item it is shifted up with two zero
bits in the Isb positions to get 10 bits. The 10 bit value is
then used to determine the amount of time the PWM signal
is high during each cycle as follows:

e value*(1/clock)*t2div

99

C Compiler Reference Manual
Built-In Functions

Where clock is oscillator frequency and t2div is the timer 2
prescaler (set in the call to setup_timer2).

Availability: This function is only available on devices with CCP/PWM
hardware.

Requires: Nothing

Examples:

// For a 20 mhz clock, 1.2 khz frequency,

// t2DIV set to 16

// the following sets the duty to 50% (or 416
us) .

long duty;

duty = 520; // .000416/(16*(1/20000000))
set_pwml duty (duty) ;

Example Files: ex_pwm.c
Also See: setup_ccpX()
SET_RTCC()

SET_TIMERO()
SET_TIMER1()
SET_TIMER2()
SET_TIMER3()

Syntax: set_timerO(value) or set_rtcc (value)
set_timer1(value)
set_timer2(value)
set_timer3(value)

Parameters: Timers 1 and 3 get a 16 bit int.
Timer 2 gets an 8 bit int.
Timer 0 (AKA RTCC) gets a 8 bit int except on the PIC18
where it needs a 16 bit int.

Returns: undefined
Function: Sets the count value of a real time clock/counter. RTCC and
Timer0 are the same. All timers count up. When a

100

Availability:

Requires:

Examples:

Example Files:

C Compiler Reference Manual
Built-In Functions

timer reaches the maximum value it will flip over to 0 and
continue counting (254, 255, 0, 1, 2...).

Timer O - All devices
Timers 1,2 - Most but not all PCM devices
Timer 3 - Only PIC18

Nothing
// 20 mhz clock, no prescaler, set timer 0
// to overflow in 35us

set_timer0(81); // 256-
(.000035/(4/20000000))

None

Also See: set_timerX(), get_timerX()
SET_TRIS_A()
SET_TRIS_B()
SET_TRIS_C()
SET_TRIS_D()
SET_TRIS_E()
Syntax: set_tris_a (value)
set_tris_b (value)
set_tris_c (value)
set_tris_d (value)
set_tris_e (value)
Parameters: value is a 8 bit int with each bit representing a bit of the /0O
port.
Returns: undefined
Function: These functions allow the I/O port direction (TRI-State)

registers to be set. This must be used with FAST_IO and
when /O ports are accessed as memory such as when a
#BYTE directive is used to access an |/O port. Using the
default standard 1/O the built in functions set the 1/O direction
automatically.

101

C Compiler Reference Manual
Built-In Functions

Each bit in the value represents one pin. A 1 indicates the
pin is input and a 0 indicates it is output.

Availability: All devices (however not all devices have all I/O ports)
Requires: Nothing
Examples:

SET_TRIS_B(OxOF);
// B7,B6,B5,B4 are outputs
// B3,B2,B1,B0 are inputs
Example Files: lcd.c

Also See: #use xxxx_io

SET_UART_SPEED()
Syntax: set_uart_speed (baud)

Parameters: baud is a constant 100-115200 representing the number of
bits per second.

Returns: undefined

Function: Changes the baud rate of the built-in hardware RS232 serial
port at run-time.

Availability: This function is only available on devices with a built in
UART.

Requires: #use rs232

Examples:

// Set baud rate based on setting
// of pins BO and Bl

switch (1nput b() & 3) {

case 0 set_uart_speed(2400) ; break;
case 1 : set_ Tuart ._speed (4800) ; break;
case 2 : set uart_speed(9600) ; break;
case 3 : set_ Tuart ._speed (19200) ; break;

102

C Compiler Reference Manual
Built-In Functions

Example Files: None

Also See: #use rs232, putc(), getc()

SETUP_ADC(mode)

Syntax: setup_adc (mode);

Parameters: mode- Analog to digital mode. The valid options varies
depending on the device. See the devices .h file for all
options. Some typical options include: ADC_OFF or
ADC_CLOCK_INTERNAL

Returns: undefined

Function: Configures the analog to digital converter.

Availability: Only the devices with built in analog to digital converter.
Requires: Constants are defined in the devices .h file.

Examples:

setup_adc _ports(ALL ANALOG) ;
setup_adc (ADC_CLOCK_INTERNAL) ;
set_adc_channel(0);

value = read_adc();

setup_adc(ADC_OFF) ;

Example Files: ex_admm.c
See Also: setup_adc_ports, set_adc_channel, read_adc, #device. The
device .h file.

SETUP_ADC_PORTS()

Syntax: setup_adc_ports (value)
Parameters: value - a constant defined in the devices .h file
Returns: undefined

103

C Compiler Reference Manual
Built-In Functions

Function: Sets up the ADC pins to be analog, digital or a combination.
The allowed combinations vary depending on the chip. The
constants used are different for each chip as well. Check
the device include file for a complete list. The constants
ALL_ANALOG and NO_ANALOGS are valid for all chips.
Some other example constants:

Availability: This function is only available on devices with A/D hardware.
Requires: Constants are defined in the devices .h file.
Examples:

// All pins analog (that can be)

setup_adc_ports(ALL_ANALOG) ;

// Pins A0, Al and A3 are analog and all others

// are digital. The +5v is used as a reference.
setup_adc_ports(RAO_RAl RA3 ANALOG) ;

// Pins A0 and Al are analog. Pin RA3 is used

// for the reference voltage and all other pins

// are digital.
setup_adc_ports(AO_RAl ANALOGRA3 REF);

Example Files: ex_admm.c

Also See: setup_adc(), read_adc(), set_adc_channel()

SETUP_CCP1()
SETUP_CCP2()

Syntax: setup_ccp1 (mode)
setup_ccp2 (mode)

Parameters: mode is a constant. Valid constants are in the devices .h file
and are as follows:
Disable the CCP:
e CCP_OFF

Set CCP to capture mode:
e CCP_CAPTURE_FE, Capture on falling edge
* CCP_CAPTURE_RE, Capture on rising edge
e CCP_CAPTURE_DIV_4, Capture after 4 pulses

104

C Compiler Reference Manual
Built-In Functions

* CCP_CAPTURE_DIV_16, Capture after 16 pulses

Set CCP to compare mode:

¢ CCP_COMPARE_SET_ON_MATCH, Output high on
compare

¢ CCP_COMPARE_CLR_ON_MATCH, Output low on
compare

e CCP_COMPARE_INT, Interrupt on compare

¢ CCP_COMPARE_RESET_TIMER, Reset timer on
compare

Set CCP to PWM mode:

e CCP_PWM, Enable Pulse Width Modulator

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

undefined

Initialize the CCP. The CCP counters may be accessed
using the long variables CCP_1 and CCP_2. The CCP
operates in 3 modes. In capture mode it will copy the timer 1
count value to CCP_x when the input pin event occurs. In
compare mode it will trigger an action when timer 1 and
CCP_x are equal. In PWM mode it will generate a square
wave. The PCW wizard will help to set the correct mode and
timer settings for a particular application.

This function is only available on devices with CCP
hardware.

Constants are defined in the devices .h file.

setup_ccpl (CCP_CAPTURE_RE) ;
ex_pwm.c, ex_ccpmp.c, ex_ccpls.c

set_pwmX_duty()

SETUP_COMPARATOR()

Syntax:

Parameters:

setup_comparator (mode)

mode is a constant. Valid constants are in the devices .h file
and are as follows:

105

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

A0_A3_A1_A2

AO0_A2 A1 _A2

NC_NC_A1 A2

NC_NC_NC_NC
AO0_VR_A2_VR

A3 VR_A2 VR

AO_A2_A1_A2 OUT_ON_A3_Ad4
A3 A2 A1 _A2

undefined

Sets the analog comparator module. The above constants
have four parts representing the inputs: C1-, C1+, C2-, C2+

This function is only available on devices with an analog
comparator.

Constants are defined in the devices .h file.

// Sets up two independent comparators (Cl and
c2),

// Cl uses A0 and A3 as inputs (- and +), and C2
// uses Al and A2 as inputs

setup_comparator (A0_A3 Al A2);

None

None

SETUP_COUNTERS()

Syntax:

Parameters:

setup_counters (rtcc_state, ps_state)

rtcc_state may be one of the constants defined in the
devices .h file. For example: RTCC_INTERNAL,
RTCC_EXT_L TO Hor RTCC_EXT_H_TO_L

ps_state may be one of the constants defined in the devices
.h file.

For example: RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8,
RTCC_DIV_186, RTCC_DIV_32, RTCC_DIV_64,
RTCC_DIV_128, RTCC_DIV_256, WDT_18MS,

106

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

WDT_36MS, WDT_72MS, WDT_144MS, WDT_288MS,
WDT_576MS, WDT_1152MS, WDT_2304MS

undefined

Sets up the RTCC or WDT. The rtcc_state determines what
drives the RTCC. The PS state sets a prescaler for either
the RTCC or WDT. The prescaler will lengthen the cycle of
the indicated counter. If the RTCC prescaler is set the WDT
will be set to WDT_18MS. If the WDT prescaler is set the
RTCC is setto RTCC_DIV_1.

This function is provided for compatibility with older versions.
setup_timer_ 0 and setup_WDT are the recommended
replacements when possible. For PCB devices if an external
RTCC clock is used and a WDT prescaler is used then this
function must be used.

All devices

Constants are defined in the devices .h file.

setup_counters (RTCC_INTERNAL, WDT_2304MS) ;
None

setup_wdt(), setup_timer_0(), devices .h file

SETUP_LCD()
Syntax:

Parameters:

setup_lcd (mode, prescale, segments);

Mode may be one of these constants from the devices .h
file:

LCD_DISABLED, LCD_STATIC, LCD_MUX12,
LCD_MUX13, LCD_MUX14

The following may be or'ed (via |) with any of the above:
STOP_ON_SLEEP, USE_TIMER_1

Prescale may be 0-15 for the LCD clock segments may be
any of the following constants or'ed together: SEGO_4,

107

Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

SEG5_8, SEG9_11, SEG12_15, SEG16_19, SEGO_28,
SEG29_31, ALL_LCD_PINS

undefined
This function is used to initialize the 923/924 LCD controller.
Only devices with built in LCD drive hardware.

Constants are defined in the devices .h file.

setup_lcd (LCD_MUX14|STOP_ON_SLEEP,2,ALL LCD_PINS)

’

ex_92lcd.c

lcd_symbol(), lcd_load()

SETUP_PSP()

Syntax:

Parameters:

setup_psp (mode)

mode may be:

e PSP_ENABLED
e PSP_DISABLED

Returns:

Function:

Availability:

Requires:
Examples:

Example Files:

undefined

Initializes the Parallel Slave Port (PSP). The
SET_TRIS_E(value) function may be used to set the data
direction. The data may be read and written to using the
variable PSP_DATA.

This function is only available on devices with PSP
hardware.

Constants are defined in the devices .h file.
None

None

108

C Compiler Reference Manual
Built-In Functions

Also See: set_tris_e()
SETUP_SPI()

Syntax: setup_spi (mode)
Parameters: modes may be:

e SPI_MASTER, SPI_SLAVE, SPI_SS_DISABLED

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

SPI_L_TO_H, SPI_H_TO_L

SPI_CLK_DIV_4, SPI_CLK_DIV_16,

SPI_CLK_DIV_64, SPI_CLK_T2

Constants from each group may be or'ed together with |.

undefined

Initializes the Serial Port Interface (SPI). This is used for 2
or 3 wire serial devices that follow a common clock/data
protocol.

This function is only available on devices with SPI hardware.
Constants are defined in the devices .h file.

setup_spi (spi_master |spi_l to_h |spi_clk div_16
)

ex_extee.c with 9356spi.c

spi_write(), spi_read(), spi_data_is_in()

SETUP_TIMER_ O ()

Syntax:

Parameters:

setup_timer_0 (mode)

mode may be one or two of the constants defined in the
devices .h file. RTCC_INTERNAL, RTCC_EXT_L TO_H or
RTCC_EXT_H_TO_L

RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8, RTCC_DIV_16,

RTCC_DIV_32, RTCC_DIV_64, RTCC_DIV_128,
RTCC_DIV_256

109

Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

PIC18 only: RTCC_OFF, RTCC_8_BIT

One constant may be used from each group or'ed together
with the | operator.

undefined
Sets up the timer 0 (aka RTCC).
All devices.

Constants are defined in the devices .h file.

setup_timer 0 (RTCC_DIV_2|RTCC_EXT L TO_H);
ex_stwt.c

get_timer0(), setup_timer0(), setup_counters()

SETUP_TIMER_1()

Syntax:

Parameters:

Returns:

Function:

setup_timer_1 (mode)

mode values may be:

e T1_DISABLED, T1_INTERNAL, T1_EXTERNAL,
T1_EXTERNAL_SYNC

e T1_CLK_OUT

e T1_DIV_BY_1,T1_DIV_BY_2,T1_DIV_BY 4,
T1_DIV_BY_8

* constants from different groups may be or'ed together with

.
undefined

Initializes timer 1. The timer value may be read and written
to using SET_TIMER1() and GET_TIMER1().

Timer 1 is a 16 bit timer. With an internal clock at 20mhz,

the timer will increment every 1.6us. It will overflow every
104.8576ms.

110

Availability:

Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

This function is only available on devices with timer 1
hardware.

Constants are defined in the devices .h file.

setup_timer 1 (T1_DISABLED) ;

setup_timer 1 (T1_INTERNAL | Tl DIV _BY 4);
setup_timer 1 (T1_INTERVAL | T1 DIV BY 8);
None

get_timer1(),

SETUP_TIMER_2()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

setup_timer_2 (mode, period, postscale)

mode may be one of:

e T2 DISABLED, T2_DIV_BY_1, T2 _DIV_BY 4,
T2_DIV_BY_16

period is a int 0-255 that determines when the clock value is
reset,

postscale is a number 1-16 that determines how many timer
resets before an interrupt: (1 means one reset, 2 means 2,
and so on).

undefined

Initializes timer 2. The mode specifies the clock divisor
(from the oscillator clock). The timer value may be read
and written to using GET_TIMER2() and SET_TIMER2().
Timer 2 is a 8 bit counter/timer.

This function is only available on devices with timer 2
hardware.

Constants are defined in the devices .h file.

setup_timer 2 (T2_DIV_BY 4, 0xc0, 2);

111

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

// At 20mhz, the timer will include every
800ns,

// will overflow every 153.6us,

// and will interrupt every 460.3us.

None

get_timer2(), setup_timer2()

SETUP_TIMER_3()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

setup_timer_3 (mode)

Mode may be one of the following constants from each

group or'ed (via |) together:

e T3_DISABLED, T3_INTERNAL, T3_EXTERNAL,
T3_EXTERNAL_SYNC, T3 _DIV_BY_1, T3_DIV_BY_2,
T3_DIV_BY 4, T3 DIV_BY_8

undefined

Initializes timer 3. The mode specifies the clock divisor

(from the oscillator clock). The timer value may be read

and written to using GET_TIMER3() and SET_TIMER3().

Timer 3 is a 16 bit counter/timer.

This function is only available on PIC18 devices.

Constants are defined in the devices .h file.

setup_timer 3 (T3_INTERNAL | T3 _DIV_BY 2);
None

get_timer3(), setup_timer3()

112

C Compiler Reference Manual
Built-In Functions

SETUP_VREF()

Syntax: setup_vref (mode | value)
Parameters: mode may be one of the following constants:
e FALSE (off)

e VREF_LOW for VDD*VALUE/24
¢ VREF_HIGH for VDD*VALUE/32 + VDD/4
* any may be or'ed with VREF_A2.

value is an int 0-15.
Returns: undefined

Function: Establishes the voltage of the internal reference that may be
used for analog compares and/or for output on pin A2.

Availability: This function is only available on devices with VREF
hardware.

Requires: Constants are defined in the devices .h file.

Examples:

setup_vref (VREF_HIGH | 6);
// At VDD=5, the voltage is 2.19V

Example Files: None

Also See: None

SETUP_WDT ()

Syntax: setup_wdt (mode)

Parameters: For PCB/PCM parts: WDT_18MS, WDT_36MS,
WDT_72MS, WDT_144MS,WDT_288MS, WDT_576MS,
WDT_1152MS, WDT_2304MS
For PIC18 parts: WDT_ON, WDT_OFF

Returns: undefined

113

C Compiler Reference Manual
Built-In Functions

Function: Sets up the watchdog timer.

The watchdog timer is used to cause a hardware reset if the
software appears to be stuck.

The timer must be enabled, the timeout time set and
software must periodically restart the timer. These are done
differently on the PCB/PCM and PCH parts as follows:

PCB/PCM PCH
Enable/Disable #fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart_wdt() restart_wdt()
Availability: All devices
Requires: #fuses, Constants are defined in the devices .h file.
Examples:

#fuses WDT_18MS // PIC1l8 example, See
// restart wdt for a PIC18
example
main () {
setup_wdt (WDT_ON) ;
while (TRUE) {
restart_wdt();
perform_activity()

}

Example Files: None

Also See: #fuses, restart_wdt()

SHIFT_LEFT()

Syntax: shift_left (address, bytes, value)

Parameters: address is a pointer to memory, bytes is a count of the
number of bytes to work with, value is a 0 to 1 to be shifted
in.

Returns: 0 or 1 for the bit shifted out

114

C Compiler Reference Manual
Built-In Functions

Function: Shifts a bit into an array or structure. The address may be
an array identifier or an address to a structure (such as
&data). Bit 0 of the lowest byte in RAM is treated as the

LSB.
Availability: All devices
Requires: Nothing
Examples:
byte buffer[3];
for (I=i; i<=24; ++i){
while ('!'input(PIN A2)); // Wait for clock
high
shift left(buffer,3,input(PIN_A3));
while (input(PIN_A2)); // Wait for clock
low
}
// reads 24 bits from pin A3,each bit is read on
a // low to high on pin A2
Example Files: ex_extee.c with 9356.c
Also See: shift_right(), rotate_right(), rotate_left(), <<, >>

SHIFT_RIGHT()

Syntax: shift_right (address, bytes, value)
Parameters: address is a pointer to memory, bytes is a count of the
number

of bytes to work with, value is a 0 to 1 to be shifted in.
Returns: 0 or 1 for the bit shifted out
Function: Shifts a bit into an array or structure. The address may be

an array identifier or an address to a structure (such as
&data). Bit 0 of the lowest byte in RAM is treated as the

LSB.
Availability: All devices
Requires: Nothing

115

Examples:

Example Files:

C Compiler Reference Manual
Built-In Functions

// reads 16 bits from pin Al, each bit is read on
a // low to high on pin A2
struct {

byte time;

byte command : 4;

byte source : 4;} msg;

for (i=0; i<=16; ++i) {
while (!'input (PIN_A2)) ;
shift right(&msg,3,input (PIN_Al));
while (input(PIN_A2)) ;}

// This shifts 8 bits out PIN A0, LSB first.
for (i=0,;i<8;++1i)
output_bit (PIN_AO,shift right(&data,1,0));

ex_extee.c with 9356.c

Also See: shift_left(), rotate_right(), rotate_left(), <<, >>
SIN ()
COS()
TAN()
ASIN()
ACOS()
ATAN()
Syntax: val = sin (rad)
val = cos (rad)
val = tan (rad)
rad = asin (val)
rad = acos (val)
rad = atan (val)
Parameters: rad is a float representing an angle in Radians -2pi to 2pi.
val is a float with the range -1.0t0 1.0
Returns: rad is a float representing an angle in Radians -pi/2 to pi/2
val is a float with the range -1.0 to 1.0
Function: These functions perform basic Triga metric functions.
Availability: All devices.

116

Requires:

Examples:

Example Files:

C Compiler Reference Manual
Built-In Functions

MATH.H must be included.

float phase;
// Output one sine wave
for (phase=0; phase<2*3.141596; phase+=0.01)
set_analog_voltage(sin(phase)+l);

None

Also See: log(), log10(), exp(), pow(), sqrt()

SLEEP()

Syntax: sleep()

Parameters: None

Returns: undefined

Function: Issues a SLEEP instruction. Details are device dependent
however in general the part will enter low power mode and
halt program execution until woken by specific external
events. Depending on the cause of the wake up execution
may continue after the sleep instruction. The compiler
inserts a sleep() after the last statement in main().

Availability: All devices

Requires: Nothing

Examples:
SLEEP() ;

Example Files: None

Also See:

reset_cpu()

SPI_DATA_IS_IN()

Syntax:

result = spi_data_is_in()

117

Parameters:
Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

None

0 (FALSE) or 1 (TRUE)

Returns TRUE if data has been received over the SPI.

This function is only available on devices with SPI hardware.

Nothing
while(!spi_data_is_in() && input(PIN_B2))
if(spi_data_is_in())

data = spi_read();

None

spi_read(), spi_write()

SPI_READ()
Syntax:
Parameters:
Returns:

Function:

Availability:

value = spi_read (data)
data is optional and if included is an 8 bit int.
An 8 bit int

Return a value read by the SPIl. If a value is passed to
SPI_READ the data will be clocked out and the data
received will be returned. If no data is ready, SPI_READ will
wait for the data.

If this device supplies the clock then either do a
SPI_WRITE(data) followed by a SPI_READ() or do a
SPI_READ(data). These both do the same thing and will
generate a clock. If there is no data to send just do a
SPI_READ(0) to get the clock.

If this the other device supplies the clock then either call
SPI_READ() to wait for the clock and data or use
SPI_DATA IS _IN() to determine if data is ready.

This function is only available on devices with SPI hardware.

118

Requires:

Examples:

Example Files:

C Compiler Reference Manual
Built-In Functions

Nothing

in_data = spi_read(out_data);

ex_extee.c with 9356spi.c

Also See: spi_data_is_in(), spi_write()

SPI_WRITE()

Syntax: SPI_WRITE (value)

Parameters: value is an 8 bit int

Returns: Nothing

Function: Sends a byte out the SPI interface. This will cause 8 clocks
to be generated. This function will write the value out to the
SPI.

Availability: This function is only available on devices with SPI hardware.

Requires: Nothing

Examples:

Example Files:

spi_write(data_out);
data_in = spi_read();

ex_extee.c with 9356spi.c

Also See: spi_read(), spi_data_is_in()
SQRT()

Syntax: result = sqrt (value)
Parameters: value is a float

Returns: A float

119

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

Computes the non-negative square root of the float x. If the
argument is negative, the behavior is undefined.

All devices

#include <math.h>

distance = sqrt(sqr(xl-x2) + sqr(yl-y2)),
None

None

STANDARD STRING FUNCTIONS

STRCAT()
STRCHR()
STRRCHR()
STRCMP()
STRNCMP()
STRICMP()
STRNCPY()
STRCSPN()
STRSPN()
STRLEN()
STRLWR()
STRPBRK()
STRSTR()

Syntax:

ptr=strcat (s1, s2) Concatenate s2 onto s1

ptr=strchr (s1, ¢) Find cin s1 and return &s1[i]

ptr=strrchr (s1, ¢) Same but search in reverse
cresult=strcmp (s1, s2) Compare s1 to s2

iresult=strncmp (s1, s2, n) Compare s1 to s2 (n bytes)
iresult=stricmp (s7, s2) Compare and ignore case
ptr=strncpy (s1, s2, n) Copy up to n characters s2->s1
iresult=strcspn (s7, s2) Count of initial chars in s1 not in s2
iresult=strspn (s17, s2) Count of initial chars in s1 also in s2
iresult=strlen (s7) Number of characters in s1

ptr=strlwr (s7) Convert string to lower case

120

Parameters:

Returns:

Function:
Availability:
Requires:

Examples:

Example Files:

C Compiler Reference Manual
Built-In Functions

ptr=strpbrk (s, s2) Search s1 for first char also in s2
ptr=strstr (s, s2) Search for s2 in s1

s1 and s2 are pointers to an array of characters (or the
name of an array). Note that s1 and s2 MAY NOT BE A
CONSTANT (like "hi").

n is a count of the maximum number of character to operate
on.

c is a 8 bit character

ptr is a copy of the s1 pointer

iresult is an 8 bit int

cresult is -1 (less than), 0 (equal) or 1 (greater than)
Functions are identified above.

All devices

#include <string.h>

char stringl[10], string2[10];
strcpy(stringl,"hi ") ;
strcpy (string2, "there") ;

strcat(stringl,string2?) ;

printf ("Length is %ul\r\n", strlen(stringl));
// Will print 8

None

Also See: strepy(), strtok()

STRTOK()

Syntax: ptr = strtok(s1, s2)

Parameters: s1 and s2 are pointers to an array of characters (or the

name of an array). Note that s1 and s2 MAY NOT BE A
CONSTANT (like "hi"). s1 may be 0 to indicate a continue
operation.

121

Returns:

Function:

Availability:
Requires:

Examples:

C Compiler Reference Manual
Built-In Functions

ptr points to a character in s1 oris 0

Finds next token in s1 delimited by a character from
separator string s2 (which can be different from call to call),
and returns pointer to it.

First call starts at beginning of s1 searching for the first
character NOT contained in s2 and returns null if there is
none is found.

If none are found, it is the start of first token (return value).
Function then searches from there for a character contained
in s2.

If none are found, current token extends to the end of s1,
and subsequent searches for a token will return null.

If one is found, it is overwritten by "O', which terminates
current token. Function saves pointer to following character
from which next search will start.

Each subsequent call, with 0 as first argument, starts
searching from the saved pointer.

All devices

#include <string.h>

char string[30], term[3], *ptr;

strcpy (string, "one, two, three;") ;
strcpy (term,", ;") ;

ptr = strtok(string, term);
while (ptr!=0) ({
puts (ptr) ;
ptr = strtok (0, term);
}
// Prints:
one
two
three

122

Example Files:

C Compiler Reference Manual
Built-In Functions

None

Also See: strxxxx(), strepy()

STRCPY()

Syntax: strcpy (dest, src)

Parameters: dest is a pointer to a RAM array of characters.
src may be either a pointer to a RAM array of characters or
it may be a constant string.

Returns: undefined

Function: Copies a constant or RAM string to a RAM string. Strings
are terminated with a 0.

Availability: All devices.

Requires: Nothing

Examples:

char string[10], string2[10];

strcpy (string, "Hi There");

strcpy (string2,string) ;

Example Files: None

Also See: strxxxx()

SWAP()

Syntax: swap (Ivalue)

Parameters: Ivalue is a byte variable

Returns: undefined - WARNING: this function does not return the

result

123

Function:

Availability:

Requires:

Examples:

Example Files:

C Compiler Reference Manual
Built-In Functions

Swaps the upper nibble with the lower nibble of the specified
byte. This is the same as:

byte = (byte << 4) | (byte >> 4);

All devices

Nothing

x=0x45;
swap (x) ;
//x now is 0x54

None

Also See: rotate_right(), rotate_left()

TAN()

See: sin()

TOLOWER()

TOUPPER()

Syntax: result = tolower (cvalue)
result = toupper (cvalue)

Parameters: cvalue is a character

Returns: A 8 bit character

Function: These functions change the case of letters in the alphabet.
TOLOWER(X) will return 'a"..'z' for X in 'A'.."Z" and all other
characters are unchanged. TOUPPER(X) will return 'A'..'Z'
for X'in 'a'..'z' and all other characters are unchanged.

Availability: All devices.

Requires: Nothing

Examples:

switch(toupper(getc())) {

124

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

case 'R' : read _cmd() ; break;

case 'W' : write_cmd(); break;

case 'Q' : done=TRUE; break;
}

None

None

WRITE_BANK()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

write_bank (bank, offset, value)

bank is the physical RAM bank 1-3 (depending on the
device), offset is the offset into user RAM for that bank
(starts at 0), value is the 8 bit data to write

undefined

Write a data byte to the user RAM area of the specified
memory bank. This function may be used on some devices
where full RAM access by auto variables is not efficient.
For example on the PIC16C57 chip setting the pointer size
to 5 bits will generate the most efficient ROM code however
auto variables can not be above 1Fh. Instead of going to 8
bit pointers you can save ROM by using this function to write
to the hard to reach banks. In this case the bank may be 1-3
and the offset may be 0-15.

All devices but only useful on PCB parts with memory over
1Fh and PCM parts with memory over FFh.

Nothing
i=0; // Uses bank 1 as a RS232 buffer
do {

c=getc() ;

write bank(1l,i++,c);
} while (c!=0x13);

None

125

C Compiler Reference Manual
Built-In Functions

Also See: See the "Common Questions and Answers" section for more
information.

WRITE_EEPROM()

Syntax: write_eeprom (address, value)

Parameters: address is a 8 bit int, the range is device dependent, value
is an 8 bit int

Returns: undefined

Function: Write a byte to the specified data EEPROM address. This

function may take several milliseconds to execute. This
works only on devices with EEPROM built into the core of
the device.

For devices with external EEPROM or with a separate
EEPROM in the same package (line the 12CE671) see
EX_EXTEE.c with CE51X.c, CE61X.c or CE67X.c.

Availability: This function is only available on devices with supporting
hardware on chip.

Requires: Nothing

Examples:
#define LAST VOLUME 10 // Location in EEPROM
volume++;

write eeprom(LAST_VOLUME,volume) ;
Example Files: ex_intee.c
Also See: read_eeprom(), write_program_eeprom(),

read_program_eeprom(),
ex_extee.c with ce51x.c, ce61x.c or ce67x.c.

WRITE_PROGRAM_EEPROM ()
Syntax: write_program_eeprom (address, data)

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts,

126

Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

C Compiler Reference Manual
Built-In Functions

data is 16 bits on PCM parts and 8 bits on PCH parts.
undefined

Writes to the specified program EEPROM area.

Only devices that allow writes to program memory.

Nothing

ex_load.c, loader.c

read_program_eeprom(), read_eeprom(), write_eeprom()

127

C Compiler Reference Manual
Compiler Error Messages

COMPILER ERROR MESSAGES

#ENDIF with no corresponding #IF
A numeric expression must appear here. The indicated item must evaluate to a
number.

A #DEVICE required before this line

The compiler requires a #device before it encounters any statement or compiler
directive that may cause it to generate code. In general #defines may appear
before a #device but not much more.

A numeric expression must appear here
Some C expression (like 123, A or B+C) must appear at this spot in the code.
Some expression that will evaluate to a value.

Array dimensions must be specified
The [] notation is not permitted in the compiler. Specific dimensions must be
used. For example A[5].

Arrays of bits are not permitted
Arrays may not be of SHORT INT. Arrays of Records are permitted but the
record size is always rounded up to the next byte boundary.

Attempt to create a pointer to a constant

Constant tables are implemented as functions. Pointers cannot be created to
functions. For example CHAR CONST MSG[9]={"HI THERE"}; is permitted,
however you cannot use &MSG. You can only reference MSG with subscripts
such as MSGJi] and in some function calls such as Printf and STRCPY.

Attributes used may only be applied to a function (INLINE or SEPARATE)
An attempt was made to apply #INLINE or #SEPARATE to something other than
a function.

Bad expression syntax
This is a generic error message. It covers all incorrect syntax.

Baud rate out of range

The compiler could not create code for the specified baud rate. If the internal
UART is being used the combination of the clock and the UART capabilities
could not get a baud rate within 3% of the requested value. If the built in UART
is not being used then the clock will not permit the indicated baud rate. For fast
baud rates, a faster clock will be required.

128

C Compiler Reference Manual
Compiler Error Messages

BIT variable not permitted here
Addresses cannot be created to bits. For example &X is not permitted if X is a
SHORT INT.

Can’t change device type this far into the code
The #DEVICE is not permitted after code is generated that is device specific.
Move the #DEVICE to an area before code is generated.

Character constant constructed incorrectly

Generally this is due to too many characters within the single quotes. For
example 'ab' is an error as is \nr'. The backslash is permitted provided the result
is a single character such as "\010' or \n'.

Constant out of the valid range

This will usually occur in inline assembly where a constant must be within a
particular range and it is not. For example BTFSC 3,9 would cause this error
since the second operand must be from 0-8.

Constant too large, must be < 65536
As it says the constant is too big.

Define expansion is too large
A fully expanded DEFINE must be less than 255 characters. Check to be sure
the DEFINE is not recursively defined.

Define syntax error
This is usually caused by a missing or mis-placed (or) within a define.

Different levels of indirection
This is caused by a INLINE function with a reference parameter being called with
a parameter that is not a variable. Usually calling with a constant causes this.

Divide by zero
An attempt was made to divide by zero at compile time using constants.

Duplicate case value
Two cases in a switch statement have the same value.

Duplicate DEFAULT statements

The DEFAULT statement within a SWITCH may only appear once in each
SWITCH. This error indicates a second DEFAULT was encountered.

129

C Compiler Reference Manual
Compiler Error Messages

Duplicate #define

The identifier in the #define has already been used in a previous #define. The
redefine an identifier use #UNDEF first. To prevent defines that may be included
from multiple source do something like:

#ifndef 1D
e #define ID text
e f#endif

Duplicate function
A function has already been defined with this name. Remember that the
compiler is not case sensitive unless a #CASE is used.

Duplicate Interrupt Procedure
Only one function may be attached to each interrupt level. For example the
#INT_RB may only appear once in each program.

Duplicate USE

Some USE libraries may only be invoked once since they apply to the entire
program such as #USE DELAY. These may not be changed throughout the
program.

Element is not a member
A field of a record identified by the compiler is not actually in the record. Check
the identifier spelling.

ELSE with no corresponding IF
Check that the {and} match up correctly.

End of file while within define definition
The end of the source file was encountered while still expanding a define. Check
for a missing).

End of source file reached without closing comment */ symbol
The end of the source file has been reached and a comment (started with /*) is
still in effect. The */ is missing.

Error in define syntax

Error text not in file

The error is a new error not in the error file on your disk. Check to be sure that
the errors.txt file you are using came on the same disk as the version of software
you are executing. Call CCS with the error number if this does not solve the
problem.

130

C Compiler Reference Manual
Compiler Error Messages

Expect ;

Expect comma

Expect WHILE

Expect }

Expecting :

Expecting =

Expecting a (

Expecting a, or)

Expecting a, or}

Expecting a .

Expecting a ; or,

Expecting a ; or {
Expecting a close paren
Expecting a declaration
Expecting a structure/union
Expecting a variable
Expecting a]

Expecting a {

Expecting an =

Expecting an array
Expecting an expression
Expecting an identifier
Expecting an opcode mnemonic
This must be a Microchip mnemonic such as MOVLW or BTFSC.

Expecting LVALUE such as a variable name or * expression

This error will occur when a constant is used where a variable should be.

example 4=5; will give this error.

Expecting a basic type
Examples of a basic type are INT and CHAR.

Expecting procedure name
Expression must be a constant or simple variable
The indicated expression must evaluate to a constant at compile time.

example 5*3+1 is permitted but 5*x+1 where X is a INT is not permitted.

were a DEFINE that had a constant value then it is permitted.

Expression must evaluate to a constant
The indicated expression must evaluate to a constant at compile time.

example 5*3+1 is permitted but 5*x+1 where X is a INT is not permitted.

were a DEFINE that had a constant value then it is permitted.

131

For

For
If X

For
If X

C Compiler Reference Manual
Compiler Error Messages

Expression too complex

This expression has generated too much code for the compiler to handle for a
single expression. This is very rare but if it happens, break the expression up
into smaller parts.

Too many assembly lines are being generated for a single C statement. Contact
CCS to increase the internal limits.

Extra characters on preprocessor command line
Characters are appearing after a preprocessor directive that do not apply to that
directive. Preprocessor commands own the entire line unlike the normal C
syntax. For example the following is an error:

#PRAGMA DEVICE <PIC16C74> main() { int x; x=1;}

File in #INCLUDE can not be opened
Check the filename and the current path. The file could not be opened.

Filename must start with " or <
Filename must terminate with " or >

Floating-point numbers not supported
A floating-point number is not permitted in the operation near the error. For
example, ++F where F is a float is not allowed.

Function definition different from previous definition

This is a mis-match between a function prototype and a function definition. Be
sure that if a #INLINE or #SEPARATE are used that they appear for both the
prototype and definition. These directives are treated much like a type specifier.

Function used but not defined
The indicated function had a prototype but was never defined in the program.

Identifier is already used in this scope
An attempt was made to define a new identifier that has already been defined.

lllegal C character in input file
A bad character is in the source file. Try deleting the line and re-typing it.

Improper use of a function identifier

Function identifiers may only be used to call a function. An attempt was made to
otherwise reference a function. A function identifier should have a (after it.

132

C Compiler Reference Manual
Compiler Error Messages

Incorrectly constructed label

This may be an improperly terminated expression followed by a label. For
example:

x=5+

MPLAB:

Initialization of unions is not permitted
Structures can be initialized with an initial value but UNIONS cannot be.

Internal compiler limit reached
The program is using too much of something. An internal compiler limit was
reached. Contact CCS and the limit may be able to be expanded.

Invalid conversion from LONG INT to INT

In this case, a LONG INT cannot be converted to an INT. You can type cast the
LONG INT to perform a truncation. For example:

I = INT(LD);

Internal Error - Contact CCS

This error indicates the compiler detected an internal inconsistency. This is not
an error with the source code; although, something in the source code has
triggered the internal error. This problem can usually be quickly corrected by
sending the source files to CCS so the problem can be re-created and corrected.

In the meantime if the error was on a particular line, look for another way to
perform the same operation. The error was probably caused by the syntax of the
identified statement. If the error was the last line of the code, the problem was in
linking. Look at the call tree for something out of the ordinary.

Invalid parameters to shift function
Built-in shift and rotate functions (such as SHIFT_LEFT) require an expression
that evaluates to a constant to specify the number of bytes.

Invalid ORG range

The end address must be greater than or equal to the start address. The range
may not overlap another range. The range may not include locations 0-3. If only
one address is specified it must match the start address of a previous #org.

Invalid Pre-Processor directive

The compiler does not know the preprocessor directive. This is the identifier in
one of the following two places:

HFXXXXX

133

C Compiler Reference Manual
Compiler Error Messages

#PRAGMA XXxXX

Library in USE not found
The identifier after the USE is not one of the pre-defined libraries for the
compiler. Check the spelling.

LVALUE required
This error will occur when a constant is used where a variable should be. For
example 4=5; will give this error.

Macro identifier requires parameters

A #DEFINE identifier is being used but no parameters were specified ,as
required. For example:

#define min(x,y) ((x<y)?x:y)

When called MIN must have a (--,--) after it such as:

r=min(value, 6);

Missing #ENDIF
A #IF was found without a corresponding #ENDIF.

Missing or invalid .REG file

The user registration file(s) are not part of the download software. In order for
the software to run the files must be in the same directory as the .EXE files.
These files are on the original diskette, CD ROM or e-mail in a non-compressed
format. You need only copy them to the .EXE directory. There is one .REG file
for each compiler (PCB.REG, PCM.REG and PCH.REG).

Must have a #USE DELAY before a #USE RS232
The RS232 library uses the DELAY library. You must have a #USE DELAY
before you can do a #USE RS232.

No MAIN() function found
All programs are required to have one function with the name main().

Not enough RAM for all variables

The program requires more RAM than is available. The memory map (ALT-M)
will show variables allocated. The ALT-T will show the RAM used by each
function. Additional RAM usage can be obtained by breaking larger functions
into smaller ones and splitting the RAM between them.

For example, a function A may perform a series of operations and have 20 local

variables declared. Upon analysis, it may be determined that there are two main
parts to the calculations and many variables are not shared between the parts. A

134

C Compiler Reference Manual
Compiler Error Messages

function B may be defined with 7 local variables and a function C may be defined
with 7 local variables. Function A now calls B and C and combines the results
and now may only need 6 variables. The savings are accomplished because B
and C are not executing at the same time and the same real memory locations
will be used for their 6 variables (just not at the same time). The compiler will
allocate only 13 locations for the group of functions A, B, C where 20 were
required before to perform the same operation.

Number of bits is out of range
For a count of bits, such as in a structure definition, this must be 1-8. For a bit
number specification, such as in the #BIT, the number must be 0-7.

Out of ROM, A segment or the program is too large

A function and all of the INLINE functions it calls must fit into one segment (a
hardware code page). For example, on the '56 chip a code page is 512
instructions. If a program has only one function and that function is 600
instructions long, you will get this error even though the chip has plenty of ROM
left. The function needs to be split into at least two smaller functions. Even after
this is done, this error may occur since the new function may be only called once
and the linker might automatically INLINE it. This is easily determined by
reviewing the call tree via ALT-T. If this error is caused by too many functions
being automatically INLINED by the linker, simply add a #SEPARATE before a
function to force the function to be SEPARATE. Separate functions can be
allocated on any page that has room. The best way to understand the cause of
this error is to review the calling tree via ALT-T.

Parameters not permitted
An identifier that is not a function or preprocessor macro can not have a (after it.

Pointers to bits are not permitted
Addresses cannot be created to bits. For example, &X is not permitted if X is a
SHORT INT.

Pointers to functions are not valid
Addresses cannot be created to functions.

Previous identifier must be a pointer
A -> may only be used after a pointer to a structure. It cannot be used on a
structure itself or other kind of variable.

Printf format type is invalid

An unknown character is after the % in a printf. Check the printf reference for
valid formats.

135

C Compiler Reference Manual
Compiler Error Messages

Printf format (%) invalid
A bad format combination was used. For example, %lc.

Printf variable count (%) does not match actual count

The number of % format indicators in the printf does not match the actual
number of variables that follow. Remember in order to print a single %, you must
use %%.

Recursion not permitted
The linker will not allow recursive function calls. A function may not call itself and
it may not call any other function that will eventually re-call it.

Recursively defined structures not permitted
A structure may not contain an instance of itself.

Reference arrays are not permitted
A reference parameter may not refer to an array.

Return not allowed in void function
A return statement may not have a value if the function is void.

String too long

Structure field name required
A structure is being used in a place where a field of the structure must appear.
Change to the form s.f where s is the structure name and f is a field name.

Structures and UNIONS cannot be parameters (use * or &)
A structure may not be passed by value. Pass a pointer to the structure using &.

Subscript out of range

A subscript to a RAM array must be at least 1 and not more than 128 elements.
Note that large arrays might not fit in a bank. ROM arrays may not occupy more
than 256 locations.

This expression cannot evaluate to a number
A numeric result is required here and the expression used will not evaluate to a
number.

This type cannot be qualified with this qualifier

Check the qualifiers. Be sure to look on previous lines. An example of this error
is:

136

C Compiler Reference Manual
Compiler Error Messages

VOID X;

Too many #DEFINE statements
The internal compiler limit for the permitted number of defines has been reached.
Call CCS to find out if this can be increased.

Too many array subscripts
Arrays are limited to 5 dimensions.

Too many constant structures to fit into available space

Available space depends on the chip. Some chips only allow constant structures
in certain places. Look at the last calling tree to evaluate space usage. Constant
structures will appear as functions with a @CONST at the beginning of the name.

Too many identifiers have been defined
The internal compiler limit for the permitted number of variables has been
reached. Call CCS to find out if this can be increased.

Too many identifiers in program
The internal compiler limit for the permitted number of identifiers has been
reached. Call CCS to find out if this can be increased.

Too many nested #INCLUDEs
No more than 10 include files may be open at a time.

Too many parameters
More parameters have been given to a function than the function was defined
with.

Too many subscripts
More subscripts have been given to an array than the array was defined with.

Type is not defined
The specified type is used but not defined in the program. Check the spelling.

Type specification not valid for a function
This function has a type specifier that is not meaningful to a function.

Undefined identifier
The specified identifier is being used but has never been defined. Check the
spelling.

Undefined label that was used in a GOTO

137

C Compiler Reference Manual
Compiler Error Messages

There was a GOTO LABEL but LABEL was never encountered within the
required scope. A GOTO cannot jump outside a function.

Unknown device type

A #DEVICE contained an unknown device. The center letters of a device are
always C regardless of the actual part in use. For example, use PIC16C74 not
PIC16RC74. Be sure the correct compiler is being used for the indicated device.
See #DEVICE for more information.

Unknown keyword in #FUSES
Check the keyword spelling against the description under #FUSES.

Unknown type
The specified type is used but not defined in the program. Check the spelling.

USE parameter invalid
One of the parameters to a USE library is not valid for the current environment.

USE parameter value is out of range

One of the values for a parameter to the USE library is not valid for the current
environment.

138

C Compiler Reference Manual
Common Questions and Answers

COMMON QUESTIONS AND ANSWERS

Questions

How does one map a variable to an I/O port? 140
Why does a program work with standard I/O but not with fast 1/07? 142
Why does the generated code that uses BIT variables look so ugly? 143
Why is the RS-232 not working right? 144
How can | use two or more RS-232 ports on one PIC? 146
How does the PIC connect to a PC? 147
Why do | get an OUT OF ROM error when there seems to be ROM left? 148
What can be done about an OUT OF RAM error? 149
Why does the .LST file look out of order? 150
How is the TIMERO interrupt used to perform an event at some rate? 151
How does the compiler handle converting between bytes and words? 152
How does the compiler determine TRUE and FALSE on expressions? 153
What are the restrictions on function calls from an interrupt function? 154
Why does the compiler use the obsolete TRIS? 155
How does the PIC connect to an 12C device? 155
Instead of 800, the compiler calls 0. Why? 156
Instead of AQ, the compiler is using register 20. Why? 156
How do | directly read/write to internal registers? 157
How can a constant data table be placed in ROM? 158
How can the RB interrupt be used to detect a button press? 159
What is the format of floating point numbers? 160
Why does the compiler show less RAM than there really is? 161
What is an easy way for two or more PICs to communicate? 162
How do | write variables to EEPROM that are not a byte? 163
How do | get getc() to timeout after a specified time? 164
How do | put a NOP at location 0 for the ICD? 166
How do | do a printf to a string? 166
How do | make a pointer to a function? 167
How can | pass a variable to functions like OUTPUT HIGH()? 165

139

C Compiler Reference Manual
Common Questions and Answers

How does one map a variable to an 1/O port?

Two methods are as follows:
#byte PORTB = 6
#define ALL OUT 0
#define ALL IN Oxff
main() {

int i;

set_tris_b(ALL_OUT) ;
PORTB = 0;// Set all pins low

for (i=0;i<=127;++i) // Quickly count from 0 to 127

the

PORTB=i ; // on the I/O port pin
set_tris b (ALL_IN);
i = PORTB; // i now contains

value.

}

portb

Remember when using the #BYTE, the created variable is treated like memory.
You must maintain the tri-state control registers yourself via the SET_TRIS_X
function. Following is an example of placing a structure on an 1/O port:

struct port_b_ layout

{int data 4;
int rw : 1;
int ed : 1;
int enable 1;
int reset 1; };
struct port_b layout port b;
#ibyte port b =6
struct port_b layout const INIT 1 = (O, 1,1,1,1};
struct port_b_layout const INIT 2 = {3, 1,1,1,0};
struct port_b layout const INIT 3 = {0, 0,0,0,0};
struct port_b layout const FOR SEND = {0,0,0,0,0};
// All outputs
struct port_b layout const FOR READ = {15,0,0,0,0};
// Data is an input
main() {
int x;

set_tris b((int) FOR_SEND); // The constant

is

//
//
//
//
//

port_b = INIT 1;

delay us(25);

140

//

structure

treated like
a byte and
is used to
set the data
direction

C Compiler Reference Manual
Common Questions and Answers

port_b = INIT 2; // These constant structures
delay us(25); // are used to set all fields

port_b = INIT 3; // on the port with a
single //
command

set_tris_b((int) FOR_READ) ;
port b.rw=0;

// Here the
individual
port _b.cd=1; // fields are accessed
port b.enable=0; // independently.

x = port _b.data;
port_b.enable=0

141

C Compiler Reference Manual
Common Questions and Answers

Why does a program work with standard 1/O but not with fast
1/10?

First remember that the fast /O mode does nothing except the I/O. The
programmer must set the tri-state registers to establish the direction via
SET_TRIS_X(). The SET_TRIS_X() function will set the direction for the entire
port (8 bits). A bit set to 1 indicates input and 0 is an output. For example, to set

all pins of port B to outputs except the B7 pin, use the following:
set_tris_b(0x80);

Secondly, be aware that fast I/O can be very fast. Consider the following code:
output_high(PIN BO);
output_low(PIN Bl);

This will be implemented with two assembly instructions (BSF 6,0 and BCF 6,1).
The microprocessor implements the BSF and BCF as a read of the entire port, a
modify of the bit and a write back of the port. In this example, at the time that the
BCF is executed, the BO pin may not have yet stabilized. The previous state of
pin BO will be seen and written to the port with the B1 change. In effect, it will
appear as if the high to BO never happened. With standard and fixed /O, this is
not usually a problem since enough extra instructions are inserted to avoid a
problem. The time it takes for a pin to stabilize depends on the load placed on
the pin. The following is an example of a fix to the above problem:

output_high(PIN BO);

delay cycles(1l); //Delay one instruction time

output_high(PIN Bl);

The delay_cycles(1) will simply insert one NOP between the two I/O commands.
At 20mhz a NOP is 0.2 us.

142

C Compiler Reference Manual
Common Questions and Answers

Why does the generated code that uses BIT variables look so
ugly?

Bit variables (SHORT INT) are great for both saving RAM and for speed but only

when used correctly. Consider the following:
int x,y;
short int bx, by;
x=5;
y=10;
bx=0;
by=1;
x = (x+by) -bx*by+ (y-by) ;

When used with arithmetic operators (+ and - above), the BX and BY will be first
converted to a byte internally: this is ugly. If this must be done, you can save
space and time by first converting the bit to byte only once and saving the

compiler from doing it again and again. For example:
z=by;
X = (x+z)-bx*z+(y-2z);

Better, would be to avoid using bits in these kinds of expressions. Almost
always, they can be rewritten more efficiently using IF statements to test the bit
variables. You can make assignments to bits, use them in IFs and use the &&, ||
and ! operators very efficiently. The following will be implemented with great
efficiency:

if (by || (bx && bz) || 'bw)

z=0;

Remember to use ! not ~, && not & and || not | with bits. Note that the INPUT(...)
function and some other built-in functions that return a bit follow the same rules.

For example do the following:

if (!'input(PIN _BO))
NOT:

if (input(PIN _BO) == 0)

Both will work but the first one is implemented with one bit test instruction and the
second one does a conversion to a byte and a comparison to zero.

143

C Compiler Reference Manual
Common Questions and Answers

Why is the RS-232 not working right?
1. The PIC is Sending Garbage Characters.

A. Check the clock on the target for accuracy. Crystals are usually not a problem
but RC oscillators can cause trouble with RS-232. Make sure the #USE DELAY
matches the actual clock frequency.

B. Make sure the PC (or other host) has the correct baud and parity setting.

C. Check the level conversion. When using a driver/receiver chip, such as the
MAX 232, do not use INVERT when making direct connections with resistors
and/or diodes. You probably need the INVERT option in the #USE RS232.

D. Remember that PUTC(6) will send an ASCII 6 to the PC and this may not be a
visible character. PUTC('A") will output a visible character A.

2. The PIC is Receiving Garbage Characters.
A. Check all of the above.
3. Nothing is Being Sent.

A. Make sure that the tri-state registers are correct. The mode (standard, fast,
fixed) used will be whatever the mode is when the #USE RS232 is encountered.
Staying with the default STANDARD mode is safest.

B. Use the following main() for testing:
main() {
while (TRUE)
putc('U'");
}

Check the XMIT pin for activity with a logic probe, scope or whatever you can. If
you can look at it with a scope, check the bit time (it should be 1/BAUD). Check
again after the level converter.

4. Nothing is being received.

First be sure the PIC can send data. Use the following main() for testing:
main () {
printf ("start");
while (TRUE)
putc(getc()+1);

144

C Compiler Reference Manual
Common Questions and Answers

}

When connected to a PC typing A should show B echoed back.

If nothing is seen coming back (except the initial "Start"), check the RCV pin on
the PIC with a logic probe. You should see a HIGH state and when a key is
pressed at the PC, a pulse to low. Trace back to find out where it is lost.

5. The PIC is always receiving data via RS-232 even when none is being sent.

A. Check that the INVERT option in the USE RS232 is right for your level
converter. If the RCV pin is HIGH when no data is being sent, you should NOT
use INVERT. If the pin is low when no data is being sent, you need to use
INVERT.

B. Check that the pin is stable at HIGH or LOW in accordance with A above
when no data is being sent.

C. When using PORT A with a device that supports the SETUP_PORT_A
function make sure the port is set to digital inputs. This is not the default. The
same is true for devices with a comparator on PORT A.

6. Compiler reports INVALID BAUD RATE.

A. When using a software RS232 (no built-in UART), the clock cannot be really
slow when fast baud rates are used and cannot be really fast with slow baud
rates. Experiment with the clock/baud rate values to find your limits.

B. When using the built-in UART, the requested baud rate must be within 3% of
a rate that can be achieved for no error to occur. Some parts have internal bugs
with BRGH set to 1 and the compiler will not use this unless you specify
BRGH10K in the #USE RS232 directive.

145

C Compiler Reference Manual
Common Questions and Answers

How can | use two or more RS-232 ports on one PIC?

The #USE RS232 (and 12C for that matter) is in effect for GETC, PUTC, PRINTF
and KBHIT functions encountered until another #USE RS232 is found.

The #USE RS232 is not an executable line. It works much like a #DEFINE.

The following is an example program to read from one RS-232 port (A) and echo
the data to both the first RS-232 port (A) and a second RS-232 port (B).
#USE RS232 (BAUD=9600, XMIT=PIN_BO, RCV=PIN_B1)
void put_to_a(char c) {
put(c) ;
}
char get from a() {
return(getc()); }
#USE RS232 (BAUD=9600, XMIT=PIN_BZ,RCV=PIN_BB)
void put_to_b(char b) {
putc(c) ;
}
main () {
char c;
put_to_a("Online\n\r");
put_to_b("Online\n\r");
while (TRUE) ({
c=get_ from a();
put_to_b(c);
put_to_a(c);

}

The following will do the same thing but is less readable:

main () {

char c;

#USE RS232 (BAUD=9600, XMIT=PIN BO, RCV=PIN B1l)
printf ("Online\n\r") ;

#USE RS232 (BAUD=9600, #useXMIT=PIN B2,RCV=PIN B3)
printf ("Online\n\r") ;
while (TRUE) {

#USE RS232 (BAUD=9600, XMIT=PIN_BO, RCV=PIN_Bl)

c=getc();

#USE RS232 (BAUD=9600, XMIT=PIN B2,RCV=PIN_B3)
putc(c) ;

#USE RS232 (BAUD=9600, XMIT=PIN BO, RCV=PIN B1l)
putc(c) ;

}

146

C Compiler Reference Manual
Common Questions and Answers

How does the PIC connect to a PC?

A level converter should be used to convert the TTL (0-5V_ levels that the PIC
operates with to the RS-232 voltages (+/- 3-12V) used by the PIC. The following
is a popular configuration using the MAX232 chip as a level converter.

+ +
— -
l——1 16 2 4 14
L 3 6 .
l 16—
m
l_4M = 18Pin o . T,
1| Max232 PIC 1
PC
2 14 ———1MN 2 (A3)
3 13 _15”_12 1(A2) 5
i B i

Any two I/0 Pins
may be used here

147

C Compiler Reference Manual
Common Questions and Answers

Why do | get an OUT OF ROM error when there seems to be
ROM left?

The OUT OF ROM error can occur when a function will not fit into a segment. A
function and all of its inline functions must fit into one hardware page.
Sometimes decisions are made automatically by the linker. This will cause too
many functions to be INLINE for a function to fit into a segment. To correct the
problem, the user may need to use #SEPARATE to force a function to be
separate. Consider the following example:

L—TEST.C
MAIN ?614 RAM=5
—DELAY MS 0/19 RAM=1
READ DATA (INLINE) RAM=5
—PROCESS DATA (INLINE) RAM=11
OUTPUT DATA (INLINE) RAM=6
PUTHEX (INLINE) RAM=2
—PUTHEX1 0/18 RAM=2
@PUTCHAR 9600 52 49 0/30 RAM=2
@PUTCHAR 9600 52 49 0/30 RAM=2
PUTHEX1 0/18 RAM=2
@PUTCHAR 9600 52 49 0/30 RAM=2
@PUTCHAR 9600 52 49 0/30 RAM=2

This example shows a main program with several INLINE functions that it calls.
The resulting size of MAIN() is 614 locations and this will not fit into a 512
location page in the *56 device. The linker will put a ? in for the segment number
since it would not fit in any segment. Note that the x/y notation is the page
number (x) and number of locations (y). As a general rule, the linker will INLINE
functions called only once to save stack space and in this program caused the
function to get too large. The solution in this example will be to put a
#SEPARATE before the declaration for PROCESS_DATA or maybe one of the
other big functions called by MAIN(). The result might look like the following:

L—TEST.C
MAIN 2406 RAM=5
—DELAY MS 0/19 RAM=1
READ_DATA (INLINE) RAM=5
—PROCESS DATA (INLINE) RAM=11
OUTPUT_DATA (INLINE) RAM=6
PUTHEX (INLINE) RAM=2
—PUTHEX1 0/18 RAM=2
@PUTCHAR_ 9600 52 49 0/30 RAM=2
@PUTCHAR 9600 52 49 0/30 RAM=2
PUTHEX1 0/18 RAM=2
|: @PUTCHAR 9600 52 49 0/30 RAM=2
@PUTCHAR 9600 52 49 0/30 RAM=2

148

C Compiler Reference Manual
Common Questions and Answers

What can be done about an OUT OF RAM error?

The compiler makes every effort to optimize usage of RAM. Understanding the
RAM allocation can be a help in designing the program structure. The best re-
use of RAM is accomplished when local variables are used with lots of functions.
RAM is re-used between functions not active at the same time. See the NOT
ENOUGH RAM error message in this manual for a more detailed example.

RAM is also used for expression evaluation when the expression is complex.
The more complex the expression, the more scratch RAM locations the compiler
will need to allocate to that expression. The RAM allocated is reserved during
the execution of the entire function but may be re-used between expressions
within the function. The total RAM required for a function is the sum of the
parameters, the local variables and the largest number of scratch locations
required for any expression within the function. The RAM required for a function
is shown in the call tree after the RAM=. The RAM stays used when the function
calls another function and new RAM is allocated for the new function. However
when a function RETURNS the RAM may be re-used by another function called
by the parent. Sequential calls to functions each with their own local variables is
very efficient use of RAM as opposed to a large function with local variables
declared for the entire process at once.

Be sure to use SHORT INT (1 bit) variables whenever possible for flags and
other boolean variables. The compiler can pack eight such variables into one
byte location. This is done automatically by the compiler whenever you use
SHORT INT. The code size and ROM size will be smaller.

Finally, consider an external memory device to hold data not required frequently.
An external 8 pin EEPROM or SRAM can be connected to the PIC with just 2
wires and provide a great deal of additional storage capability. The compiler
package includes example drivers for these devices. The primary drawback is a
slower access time to read and write the data. The SRAM will have fast read
and write with memory being lost when power fails. The EEPROM will have a
very long write cycle, but can retain the data when power is lost.

149

C Compiler Reference Manual
Common Questions and Answers

Why does the .LST file look out of order?

The list file is produced to show the assembly code created for the C source
code. Each C source line has the corresponding assembly lines under it to show
the compiler’s work. The following three special cases make the .LST file look
strange to the first time viewer. Understanding how the compiler is working in
these special cases will make the .LST file appear quite normal and very useful.

1. Stray code near the top of the program is sometimes under what looks like a
non-executable source line.

Some of the code generated by the compiler does not correspond to any
particular source line. The compiler will put this code either near the top of the
program or sometimes under a #USE that caused subroutines to be generated.

2. The addresses are out of order.

The compiler will create the .LST file in the order of the C source code. The
linker has re-arranged the code to properly fit the functions into the best code
pages and the best half of a code page. The resulting code is not in source
order. Whenever the compiler has a discontinuity in the .LST file, it will put a *
line in the file. This is most often seen between functions and in places where
INLINE functions are called. In the case of a INLINE function, the addresses will
continue in order up where the source for the INLINE function is located.

3. The compiler has gone insane and generated the same instruction over and
over.

For Example:
03F: CLRF 15
46: CLRF 15
051: CLRF 15

113: CLRF 15

This effect is seen when the function is an INLINE function and is called from
more than one place. In the above case, the A=0 line is in a INLINE function
called in four places. Each place it is called from gets a new copy of the code.
Each instance of the code is shown along with the original source line, and the
result may look unusual until the addresses and the * are noticed.

150

C Compiler Reference Manual
Common Questions and Answers

How is the TIMERO interrupt used to perform an event at some
rate?

The following is generic code used to issue a quick pulse at a fixed rate:
#include <16Cxx.H>
#fuse Delay (clock=15000000)
#define HIGH START 114
byte seconds, high_count;
#INT RTCC
clock_isr() {
if (--high_count==0) {
output_high (PIN_BO) ;
delay us(5);
output_low (PIN_BO);
high count=HIGH_START;
}
}
main() {
high count=HIGH_START;
set_rtcc(0);
setup_counters (RTCC_INTERNAL, RTCC_DIV_128);
enable_ interrupts (RTCC_ZERO) ;
enable_interrupts (GLOBAL) ;
while (TRUE) ;
}

In this program, the pulse will happen about once a second. The math is as
follows:

The timer is incremented at (CLOCK/4)/RTCC_DIV.

In this example, the timer is incremented (15000000/4)/128 or 29297 times a
second (34us).

The interrupt happens every 256 increments.
In this example, the interrupt happens 29297/256 or 114 times a second.

The interrupt function decrements a counter (HIGH_START times) until it is zero,
then issues the pulse and resets the counter.

In this example, HIGH_START is 114 so the pulse happens once a second.

If HIGH_START were 57, the pulse would be about twice a second.

151

C Compiler Reference Manual
Common Questions and Answers

How does the compiler handle converting between bytes and
words?

In an assignment such as:
bytevar = wordvar;

The most significant BYTE is lost. This is the same result as:
bytevar = wordvar & Oxff;

The following will yield just the most significant BYTE:
bytevar = wordvar >> 8;

Any arithmetic or relational expression involving both bytes and words will
perform word operations, and treat the bytes as words with the top byte 0. For
example:

wordvar= 0x1234;

bytevar= 0x34;

if (wordvar==bytevar) //will be FALSE

Any arithmetic operations that only involve bytes will yield a byte result even
when assigned to word.

For Example:
bytevarl 0x80;
bytevar2 0x04;
wordvar = bytevarl * bytevar2;
//wordvar will be 0

However, typecasting may be used to force word arithmetic:
wordvar = (long) bytevarl * (long) bytevar2;
//wordvar will be 0x200

152

C Compiler Reference Manual
Common Questions and Answers

How does the compiler determine TRUE and FALSE on
expressions?

When relational expressions are assigned to variables, the result is always 0 or
1.

For Example:
bytevar
bytevar

5>0; //bytevar will be 1
0>5; //bytevar will be 0

The same is true when relation operators are used in expressions.

For Example:
bytevar = (x>y)*4;

is the same as:
if(x>y)
bytevar=4;
else
bytevar=0;

SHORT INTs (bit variables) are treated the same as relational expressions.
They evaluate to 0 or 1.

When expressions are converted to relational expressions or SHORT INTs, the
result will be FALSE (or 0) when the expression is 0, otherwise the result is
TRUE (or 1).

For Example:
bytevar = 54;

bitvar = bytevar; //bitvar will be 1 (bytevar ! = 0)
if (bytevar) //will be TRUE

bytevar = 0;

bitvar = bytevar; //bitvar will be 0

153

C Compiler Reference Manual
Common Questions and Answers

What are the restrictions on function calls from an interrupt
function?

Whenever interrupts are used, the programmer MUST ensure there will be
enough stack space. Ensure the size of the stack required by the interrupt plus
the size of the stack already used by main() wherever interrupts are enabled is
less than 9. This can be seen at the top of the list file.

The compiler does not permit recursive calls to functions because the RISC
instruction set does not provide an efficient means to implement a traditional C
stack. All RAM locations required for a given function are allocated to a specific
address at link time in such a way that RAM is re-used between functions not
active at the same time. This prohibits recursion. For example, the main()
function may call a function A() and A() may call B() but B() may NOT call main(),
A() or B().

An interrupt may come in at any time, which poses a special problem. Consider
the interrupt function called ISR() that calls the function A() just like main() calls
A(). If the function A() is executing because main() called it and then the ISR()
activates, recursion will have happened.

In order to prevent the above problem, the compiler will "protect” the function call
to A() from main() by disabling all interrupts before the call to A() and restoring
the interrupt state after A() returns. In doing so, the compiler can allow complete
sharing of functions between the main program and the interrupt functions.

The programmer must take the following special considerations into account:
1. In the above example, interrupts will be disabled for the entire execution of A().
This will increase the interrupt latency depending on the execution time of A().

2. If the function A() changes the interrupts using ENABLE/DISABLE
_INTERRUPTS then the effect may be lost upon the return from A(), since the
entire INTCON register is saved before A() is called and restored afterwards.
Furthermore, if the global interrupt flag is enabled in A(), the program may
execute incorrectly.

3. A program should not depend on the interrupts being disabled in the above
situation. The compiler may NOT disable interrupts when the function or any
function it calls requires no local RAM.

4. The interrupts may be disabled, as described above for internal compiler

functions called by the same manor. For example, multiplication invoked by a
simple * may have this effect.

154

C Compiler Reference Manual
Common Questions and Answers

Why does the compiler use the obsolete TRIS?

The use of TRIS causes concern for some users. The Microchip data sheets
recommend not using TRIS instructions for upward compatibility. If you had
existing ASM code and it used TRIS then it would be more difficult to port to a
new Microchip part without TRIS. C does not have this problem, however; the
compiler has a device database that indicates specific characteristics for every
part. This includes information on whether the part has a TRIS and a list of
known problems with the part. The latter question is answered by looking at the
device errata.

CCS makes every attempt to add new devices and device revisions as the data
and errata sheets become available.

PCW users can edit the device database. If the use of TRIS is a concern, simply
change the database entry for your part and the compiler will not use it.

How does the PIC connect to an 12C device?

Two /O lines are required for I12C. Both lines must have pullup registers. Often
the 12C device will have a H/W selectable address. The address set must match
the address in S/W. The example programs all assume the selectable address
lines are grounded.

+
) T4
16 ﬁiq
Y e |
1 8 & 4
2 2416, 18 Pin
PIC
'—\u-(‘t
3 ¢ [saL 12(B6)
1K,
—1 5 Isoa 13(87)
J_ 5
l i

155

C Compiler Reference Manual
Common Questions and Answers

Instead of 800, the compiler calls 0. Why?

The PIC ROM address field in opcodes is 8-10 Bits depending on the chip and
specific opcode. The rest of the address bits come from other sources. For
example, on the 174 chip to call address 800 from code in the first page you will
see:

BSF 0A,3

CALL 0

The call 0 is actually 800H since Bit 11 of the address (Bit 3 of PCLATH, Reg 0A)
has been set.

Instead of A0, the compiler is using register 20. Why?

The PIC RAM address field in opcodes is 5-7 bits long, depending on the chip.
The rest of the address field comes from the status register. For example, on the
74 chip to load AO into W you will see:

BSF 3,5
MOVFW 20

Note that the BSF may not be immediately before the access since the compiler
optimizes out the redundant bank switches.

156

C Compiler Reference Manual
Common Questions and Answers

How do | directly read/write to internal registers?

A hardware register may be mapped to a C variable to allow direct read and write

capability to the register. The following is an example using the TIMERQO register:
#BYTE timer0 = 0x01
timer0O= 128; //set timer0 to 128
while (timer0 ! = 200); // wait for timer0 to reach 200

Bits in registers may also be mapped as follows:
#BIT TOIF = 0x0B.1

while (!TOIF); //wait for timer(0 interrupt

Registers may be indirectly addressed as shown in the following example:
printf ("enter address:");
a = gethex ();
printf ("\r\n value is %x\r\n", *a);

The compiler has a large set of built-in functions that will allow one to perform the
most common tasks with C function calls. When possible, it is best to use the
built-in functions rather than directly write to registers. Register locations change
between chips and some register operations require a specific algorithm to be
performed when a register value is changed. The compiler also takes into
account known chip errata in the implementation of the built-in functions. For
example, it is better to do set_tris_A(0); rather than *0x85=0;

157

C Compiler Reference Manual
Common Questions and Answers

How can a constant data table be placed in ROM?

The compiler has support for placing any data structure into the device ROM as a
constant read-only element. Since the ROM and RAM data paths are separate
in the PIC, there are restrictions on how the data is accessed. For example, to

place a 10 element BYTE array in ROM use:
BYTE CONST TABLE [10]= {9,8,7,6,5,4,3,2,1,0};

and to access the table use:
x = TABLE [i];
OR
x = TABLE [5];

BUT NOT
ptr = &TABLE [i];

In this case, a pointer to the table cannot be constructed.

Similar constructs using CONST may be used with any data type including
structures, longs and floats.

Note that in the implementation of the above table, a function call is made when
a table is accessed with a subscript that cannot be evaluated at compile time.

158

C Compiler Reference Manual
Common Questions and Answers

How can the RB interrupt be used to detect a button press?

The RB interrupt will happen when there is any change (input or output) on pins
B4-B7. There is only one interrupt and the PIC does not tell you which pin
changed. The programmer must determine the change based on the previously
known value of the port. Furthermore, a single button press may cause several
interrupts due to bounce in the switch. A debounce algorithm will need to be
used. The following is a simple example:
#int rb
rb_isr () {
byte changes;
changes = last b * port b;
last b = port b;
if (bit_test(changes,4)&& 'bit_test(last_b,4)){
//b4 went low
}
if (bit_test(changes,5)&& 'bit test (last b,5)){
//b5 went low
}

delay-ms (100); //debounce
}

The delay=ms (100) is a quick and dirty debounce. In general, you will not want
to sit in an ISR for 100 MS to allow the switch to debounce. A more elegant
solution is to set a timer on the first interrupt and wait until the timer overflows.
Don’t process further changes on the pin.

159

C Compiler Reference Manual
Common Questions and Answers

What is the format of floating point numbers?

CCS uses the same format Microchip uses in the 14000 calibration constants.
PCW users have a utility PCONVERT that will provide easy conversion to/from
decimal, hex and float in a small window in Windows. See EX_FLOAT.C for a
good example of using floats or float types variables. The format is as follows:

BYTE 1 BYTE 2 BYTE 3 BYTE 4
Lowest !
BYTE
in RAM

_HTKMSB p—

2)(%';”6 S:?” 23 Bit Mantisa

nt

with

bias of

7F

Example Number

0 00 00 00 00
1 7F 00 00 00
-1 7F 80 00 00
10 82 20 00 00
100 85 47 00 00
123.45 85 48 E6 66
123.45E20 C8 27 4E 53
123.45 E-20 43 36 2E 17

!

Lowest BYTE in RAM

160

C Compiler Reference Manual
Common Questions and Answers

Why does the compiler show less RAM than there really is?

Some devices make part of the RAM much more ineffective to access than the
standard RAM. In particular, the 509, 57, 66, 67,76 and 77 devices have this
problem.

By default, the compiler will not automatically allocate variables to the problem
RAM and, therefore, the RAM available will show a number smaller than
expected.

There are three ways to use this RAM:

1. Use #BYTE or #BIT to allocate a variable in this RAM. Do NOT create a
pointer to these variables.

Example:
#BYTE counter=0x30

2. Use Read_Bank and Write_Bank to access the RAM like an array. This works
well if you need to allocate an array in this RAM.

Example:
for (i=0;i<15;i++)
Write Bank(1l,i,getc());
for (i=0;i<=15;i++)
PUTC (Read_Bank(1,i));

3. For PCM users, you can switch to 16 bit pointers for full RAM access (This
takes more ROM). Add *=16 to the #DEVICE .

Example:
#DEVICE PIC16C77 *=16

161

C Compiler Reference Manual
Common Questions and Answers

What is an easy way for two or more PICs to communicate?

There are two example programs (EX PBUSM.C and EX PBUSR.C) that show
how to use a simple one-wire interface to transfer data between PICs. Slower
data can use pin BO and the EXT interrupt. The built-in UART may be used for
high speed transfers. An RS232 driver chip may be used for long distance
operations. The RS485 as well as the high speed UART require 2 pins and
minor software changes. The following are some hardware configurations.

SIMPLE MULTIPLE PIC BUS

£ - AMA

BO BO BO !

PIC PIC PIC see

#USE RS232 (baud =9600, float_high, bits =9, xmit =PIN_BO,rcv =PIN_B0)

LONG DISTANCE MULTI-DROP BUS

8 8
* 1 1 * u
pIc * 4 oszsrs [E KO0 osrsrrs * PIC ormigh
B2 3 Several PICS 3 B2 spee'g or BO,
cantapin B1 for ’
2 5 parallel here 2 s slower
] 1] speeds

#USE RS232 (baud =9600,bits =9,xmit =pin_* RCV =pin_*, enable-=PIN_B2)

162

C Compiler Reference Manual
Common Questions and Answers

How do | write variables to EEPROM that are not a byte?

The following is an example of how to read and write a floating point number
from/to EEPROM. The same concept may be used for structures, arrays or any
other type.

n is an offset into the eeprom.

For floats you must increment it by 4.

For exampile if the first float is at O the second
one should be at 4 and the third at 8.

WRITE FLOAT EXT EEPROM(long int n, float data) {
int i;
for (i = 0; i < 4; i++)
write ext eeprom(i + n, *(&data + i)) ;
}
float READ_FLOAT EXT EEPROM(long int n) {
int i;

float data;

for (1 = 0; i < 4; i++)
*(&data + i) = read ext_eeprom(i + n);

return (data) ;

163

C Compiler Reference Manual
Common Questions and Answers

How do | get getc() to timeout after a specified time?

GETC will always wait for the character to become available. The trick is to not
call getc() until a character is ready. This can be determined with kbhit().

The following is an example of how to time out of waiting for an RS232 character.

Note that without a hardware UART the delay_us should be less than a tenth of a
bit time (10 us at 9600 baud). With hardware you can make it up to 10 times the
bit time. (1000 us at 9600 baud). Use two counters if you need a timeout value
larger than 65535.

short timeout_ error;

char timed getc() {
long timeout;

timeout_error=FALSE;
timeout=0;
while ('kbhité&& (++timeout<50000)) // 1/2 second
delay us(10);
if (kbhit())
return (getc()) ;
else {
timeout_error=TRUE;
return (0) ;

}

164

C Compiler Reference Manual
Common Questions and Answers

How can | pass a variable to functions like OUTPUT_HIGH()?

The pin argument for built in functions like OUTPUT_HIGH need to be known at
compile time so the compiler knows the port and bit to generate the correct code.

If your application needs to use a few different pins not known at compile time
consider:

switch(pin_to_use) {

case PIN B3 : output_high(PIN_B3); break;
case PIN B4 : output_high(PIN_B4); break;
case PIN B5 : output_high(PIN_BS5); break;
case PIN Al : output_high(PIN_Al); break;

}

If you need to use any pin on a port use:

#byte portb = 6
#byte portb_tris = 0x86 // **

portb_tris &= ~(1<<bit_to_use); // **
portb |= (1<<bit_to_use); // bit_to_use is 0-7
If you need to use any pin on any port use:
* (pin_to_use/8|0x80) &= ~(1<<(pin_to_use&7)); // **
*(pin_to_use/8) |= (1<<(pin_to_use&7));
In all cases pin_to_use is the normal PIN_AQO... defines.

** These lines are only required if you need to change the direction register
(TRIS).

165

C Compiler Reference Manual
Common Questions and Answers

How do | put a NOP at location 0 for the ICD?

The CCS compilers are fully compatible with Microchips ICD debuger using
MPLAB. In order to prepare a program for ICD debugging (NOP at location 0
and so on) you need to add a #DEVICE ICD=TRUE after your normal #DEIVCE.

For Example:

#INCLUDE <16F877.h>
#DEVICE ICD=TRUE

How do | do a printf to a string?

The following is an example of how to direct the output of a printf to a string. We
used the \f to indicate the start of the string.

This example shows how to put a floating point number in a string.

char string[20];
byte stringptr=0;

tostring(char c) {

if (c=="\f")
stringptr=0;
else

string[stringptr++]=c;
string[stringptr]=0;
}

main() {
float £;

£=12.345;

printf (tostring,"\£%6.3£f",f) ;

166

C Compiler Reference Manual
Common Questions and Answers

How do | make a pointer to a function?

The compiler does not permit pointers to functions so that the compiler can know
at compile time the complete call tree. This is used to allocate memory for full
RAM re-use. Functions that could not be in execution at the same time will use
the same RAM locations. In addition since there is no data stack in the PIC,
function parameters are passed in a special way that requires knowledge at
compile time of what function is being called. Calling a function via a pointer will
prevent knowing both of these things at compile time. Users sometimes will want
function pointers to create a state machine. The following is an example of how
to do this without pointers:

enum tasks {taskA, taskB, taskC};
run_task (tasks task_to_run) ({

switch(task_to_run) {

case taskA : taskA main(); break;
case taskB : taskB main(); break;
case taskC : taskC_main(); break;

}

167

C Compiler Reference Manual
Example Programs

EXAMPLE PROGRAMS

A large number of example programs are included on the disk. The following is a
list of many of the programs and some of the key programs are re-printed on the
following pages. Most programs will work with any chip by just changing the
#INCLUDE line that includes the device information. All of the following
programs have wiring instructions at the beginning of the code in a comment
header. The SIO.EXE program included in the program directory may be used to
demonstrate the example programs. This program will use a PC COM port to
communicate with the target.

Generic header files are included for the standard PIC parts. These files are in
the DEVICES directory. The pins of the chip are defined in these files in the form
PIN_B2. It is recommended that for a given project, the file is copied to a project
header file and the PIN_xx defines be changed to match the actual hardware.
For example; LCDRW (matching the mnemonic on the schematic). Use the
generic include files by placing the following in your main .C file:

#include <16C74.H>

EX_SQw.C

This is a short program that uses RS-232 I/O to talk to a user and upon
command will be in a 1khz square wave. This simple program shows how easy it
is to use the basic built-in functions.

EX_PULSE.C

This program will use the RTCC (timerQ) to time a single pulse input to the PIC.
This program will show how to use the RTCC and how to output a decimal
number.

EX_ADMM.C
This simple A/D program takes 30 A/D samples and displays the minimum and
maximum values over the RS-232. The process is forever repeated.

EX_STWT.C

This program uses interrupts to keep a real time seconds counter. It then
implements a stopwatch function over the RS-232. This program will show how
simple it is to use interrupts.

EX_INTEE.C
This is a general purpose EEPROM read/write program for use with the internal
EEPROM.

EX_LCDKB.C

168

C Compiler Reference Manual
Example Programs

This program uses both a 16x2 LCD module and a 3x4 keypad to demonstrate
the use of the LCD.C driver and KBD.C driver. This program will display keypad
input on the LCD.

EX_EXTEE.C

This is a general-purpose serial EEPROM read/write program. This may be used
with a large number of devices depending on the include file used. The following
include files have fully tested drivers for various devices:

2401.C, 2402.C, 2404.C, 2408.C, 2416.C, 2432.C, 2465.C, 9346.C, 9356.C,
9366.C, 9356SPI.C

The 24xx.C files demonstrate the use of 12C. The other files demonstrate doing
serial I/O over 2/3 wire interfaces. The files with SPI at the end use the internal
SSP hardware.

EX_RTC.C

This program uses the RS-232 interface to read and set an external RTC chip.
One of the following chips may be used by simply including the correct INCLUDE
file in the program:

DS1302.C, NJU6355.C

EX_RTCLK.C
Same as EX_RTC.C except the interface to the RTC is using a LCD and keypad.

EX_AD12.C
Similar to EX.ADMM but uses a 12 bit external A/D part. This program uses the
LTC1298.C driver.

EX_STEP.C
This is an example program to drive a stepper motor.

EX_X10.C

This program demonstrates the X10.C driver by providing a X10 to RS-232
interface. X10 codes will be sent to the PC and may be entered at the PC for
transmission.

EX_TOUCH.C
This program uses the TOUCH.C driver to show how easy it is to interface to the
Dallas touch devices.

EX_SRAM.C

169

C Compiler Reference Manual
Example Programs

This program may be used with either the DS2223.C or PCF8570.C drivers to
interface to an external serial RAM chip. This is a great way to gain additional
memory.

EX_14KAD.C
This program uses 14KCAL.C to show how to do A/D conversions on the
PIC14000.

EX_92LCD.C
This program shows how to use the 923 and 924 LCD.

EX_DEC.C
This example shows how to create your own special purpose formatted print
functions for types such as fixed point.

EX_FLOAT.C
Demonstrates the compiler's floating point capability.

EX_PWM.C
This program shows how to use the built-in PWM with the compiler built-in
functions.

EX_CCP1S.C
This program uses the hardware CCP to generate a precision one-shot pulse.

EX_CCPMP.C
This program uses the H/W CCP and compiler built-ins to measure a pulse width.

EX_LED.C
This program directly drives a two-digit 7-segment LED display.

EX_TEMP.C
This program uses the DS1621.C driver to display the temperature in Fahrenheit.

EX_PBUSM.C
This program shows how to set up a one-wire PIC to a PIC message program.

EX_PBUSR.C

This program shows how to set up a one-wire PIC to PIC shadow RAM. Any
number of PICs may be connected on the wire and each will have a RAM block.
When the RAM is changed in one PIC, it will be changed in all other PICS.

EX_SISR.C

170

C Compiler Reference Manual
Example Programs

This program shows how to implement an interrupt-driven RS232 receiver.

EX_EXPIO.C
This program uses 74165.C and 74595.C to show how to use external chips to
create more input and output pins.

EX_DPOT.C
This program uses DS1868.C to show how to implement a digital POT.

EX_50X.C
EX_LNG32.C
EX_1920.C
EX_SLAVE.C

This program uses the PIC in I12C slave mode to emulate the 240LCO1
EEPROM.

171

C Compiler Reference Manual
Example Programs

LI011770777777777777777777771777777777717771777771777177777117777

/// EX_SQW.C /17
///This program displays a message over the RS-232 and ///
///waits for any keypress to continue. The program ///
///will then begin a lkhz square wave over I/O pin BO. ///
///Change both delay us to delay ms to make the ///
/// frequency 1 hz. This will be more visible on ///
///a LED. Configure the CCS prototype card as ///
///follows: insert jumpers from 11 to 17, 12 to 18, ///
///and 42 to 47. ///

L111077077777777777777777777777777777717771777771777171777111777

#ifdef _ PCB
#include <16C56.H>
#else

#include <16C84.H>
#endif

#use delay(clock=20000000)
#use rs232(baud=9600, xmit=PIN A3, rcv=PIN_A2)

main () {
printf ("Press any key to begin\n\r");
getc();
printf ("1l khz signal activated\n\r");
while (TRUE) {
output_high (PIN_BO) ;
delay us(500);
output_low (PIN_BO) ;
delay us(500);

172

C Compiler Reference Manual
Example Programs

LI011770777777777777777777771777777777717771777771777177777117777

/// EX_STWT.C /17
/// This program uses the RTCC (timer0) and ///
/// interrupts to keep a real time seconds counter. ///
/// A simple stop watch function is then implemented. ///
///Configure the CCS prototype card as follows, insert ///
/// jumpers from: 11 to 17 and 12 to 18. ///

L1717770777771777777777777777777777777777777777777717777771717177

#include <16C84.H>

#fuse delay (clock=20000000)

#use rs232(baud=9600, xmit=PIN A3, rcv=PIN A2

#define INTS PER SECOND 76 //(20000000/ (4*256%256))

byte seconds; //Number of interrupts left
//before a second has

elapsed
#int_rtcc //This function is called
clock _isr() { //every time the RTCC (timer0)

//overflows (255->0)
//For this program this is apx
//76 times per second.

if (--int_count==0) {
++seconds;
int_count=INTS_PER SECOND;

}

main() {
byte start;
int_count=INTS_PER _ SECOND;
set_rtcc(0);
setup_counters (RTCC_INTERNAL, RTCC_DIV_256) ;
enable_interrupts (RTCC_ZERO) ;
enable_ interrupts (GLOBAL)
do {
printf ("Press any key to begin. \n\r");
getc() ;
start=seconds;
printf ("Press any key to stop. \n\r");
getc();
printf ("%u seconds. \n\r", seconds-start);
} while (TRUE) ;

173

C Compiler Reference Manual
Example Programs

LI011770777777777777777777771777777777717771777771777177777117777

/// EX_INTEE.C ///
///This program will read and write to the ’83 or ’84 ///
/// internal EEPROM. Configure the CCS prototype ///
/// card as follows: insert jumpers from 11 to 17 and ///
/// 12 to 18. ///

111711111171 77777777777777/77777777//77/77//7/7//7////////////////////7/
#include <16C84.H>

#use delay(clock-100000000)
#use rs232 (baud=9600, xmit=PIN A3, rv+PIN_A2)

#include <HEX.C>

main () {
byte i,j,address, value;

do {
printf ("\r\n\nEEPROM: \r\n") //Displays
contents
for (i=0; i<3; ++i) { //entire
EEPROM
for (j=0; j<=15; ++3j) { //in hex

printf ("%2x", read eeprom(i+l6+j));

}

printf ("\n\zr");
}
printf ("\r\nlocation to change: ");
address= gethex() ;
printf ("\r\nNew value: ");
value=gethex () ;

write eeprom (address, value);
} while (TRUE)

174

C Compiler Reference Manual

[111777
///Library for a Microchip 93C56 configured for a x

Example Programs

1111171711177
8 11/

///org init_ext _eeprom(); Call before the other ///
///functions are used write_ext eeprom(a,d); Write ///
///the byte d to the address a d=read ext _eeprom (a);///
///Read the byte d from the address a. The main ///
/// program may define eeprom select, eeprom di, ///
/// eeprom do and eeprom clk to override the ///
///defaults below. ///
111171777

#ifndef EEPROM SELECT

#define EEPROM SELECT PIN B7
#define EEPROM CLK PIN B6
#define EEPROM DI PIN_B5
#define EEPROM DO PIN B4
#endif

#define EEPROM ADDRESS byte
#define EEPROM SIZE 256

void init_ext eeprom () {
byte cmd[2];
byte i;

output_low (EEPROM DI) ;
output_low (EEPROM_ CILK) ;
output_low (EEPROM_SELECT) ;

cmd[0]=0x80;
cmd[1]=0x9;

for (i=1; i<=4; ++i)
shift left(cmd, 2,0);
output_high (EEPROM_ SELECT) ;
for (i=1; i<=12; ++i) ({
output_bit (EEPROM DI, shift_ left(cmd,
output_high (EEPROM CLK) ;
output_low (EEPROM CIK) ;

output_low (EEPROM DI) ;
output_low (EEPROM_SELECT) ;
}

2,0));

void write_ext eeprom (EEPROM_ADDRESS address, byte data) {

byté-cmal3];
byte i;

175

C Compiler Reference Manual
Example Programs

cmd[0]=data;
cmd[l]=address;
cmd[2]=0xa;

for (i=1;i<=4;++1i)
shift left(emd,3,0);
output_high (EEPROM_SELECT) ;
for (i=1;i<=20;++1i) {
output_bit (EEPROM DI, shift left (cmd,3,0));
output_high (EEPROM CIK) ;
output_low (EEPROM_ CILK) ;
}
output_low (EEPROM DI);
output_low (EEPROM_ SELECT) ;
delay ms(11);
}

byte read ext eeprom(EEPROM ADDRESS address) {
byte cmd[3];
byte i, data;

cmd[0]=0;
cmd[1l]=address;
cmd[2]=0xc;

for (i=1;i<=4;++1i)
shift left(emd,3,0);
output_high (EEPROM_SELECT) ;
for (i=1;i<=20;++1i) {
output_bit (EEPROM DI, shift left (cmd,3,0));
output_high (EEPROM CIK) ;
output_low (EEPROM_ CILK) ;
if (i>12)
shift left (&data, 1, input (EEPROM DO)) ;
}
output_low (EEPROM_ SELECT) ;
return (data) ;

176

C Compiler Reference Manual
Software License Agreement

SOFTWARE LICENSE AGREEMENT

By opening the software diskette package, you agree to abide by the following
provisions. If you choose not to agree with these provisions promptly return the
unopened package for a refund.

1. License- Custom Computer Services ("CCS") grants you a license to use the
software program ("Licensed Materials") on a single-user computer. Use of the
Licensed Materials on a network requires payment of additional fees.

2. Applications Software- Derivative programs you create using the Licensed
Materials identified as Applications Software, are not subject to this agreement.

3. Warranty- CCS warrants the media to be free from defects in material and
workmanship and that the software will substantially conform to the related
documentation for a period of thirty (30) days after the date of your purchase.
CCS does not warrant that the Licensed Materials will be free from error or will
meet your specific requirements.

4. Limitations- CCS makes no warranty or condition, either expressed or implied,
including but not limited to any implied warranties of merchantability and fitness
for a particular purpose, regarding the Licensed Materials.

Neither CCS not any applicable licensor will be liable for an incidental or
consequential damages, including but not limited to lost profits.

5. Transfers- Licensee agrees not to transfer or export the Licensed Materials to
any country other than it was originally shipped to by CCS.

The Licensed Materials are copyrighted

© 1994, 2001 Custom Computer Services Incorporated
All Rights Reserved Worldwide

P.O. Box 2452

Brookfield, W1 53008

177

C Compiler Reference Manual

Index
Index
#
S e 19
BT e 22
BB Y T .ot 22,23
O ASE ... e e 23
B FINE ... e 24,25
HDEVICE ... e e e 25
BELSE ... oo nnannnnnns 28, 29
BEND ASI e nnnnnnnnn 19, 20
HENDIE ...t e e e e e e e e e e e e e e s 28, 29, 30
et S] 26
B USES oo nnnnnnnnnnn 27
=31 B 04 Y=Y o (U o o 27
FID FIlENAMEo e e e e e e e e e e e e e eaaeeeeaas 27
E- 1 I o101 0] o= TR 27
#ID number
number
10001 o =Y SRR 27,28
2 1= o USSR 28
FHIEDEF ...t e e e e e e e e e aeaeae 29, 30
BIFNDEF ... oo amememmmmmnmnenmnmnennnen 29
FINCLUDEo e e e e ettt e e e e e e e e e e aab e e e e eeeenranns 30
FHINLINE ..ottt e et e e e e e et et e e e e e e e e e aaaba s e eeaeeeenaanas 31
BINT _AD et e anes 32
BINT ADOF ... e e e e e e e e 31
FINT BUSCOL ... e e e e e e 31
FINT BUTTON. .o a e e e e e e e e e e e e aaas 31
BINT COP T et a e e e e e 31
BINT COP2 ... a e e e e 31
FINT COMP ... e e e e e e e e 31
FINT _DEFAULT oottt e e e e e e e e snnrae e e e e e an 32,33
FINT _EEPROM ..ottt e e e e ee e e e e e e e 31
BN T EXT e e e e e e e s e e e e e e e e e e e e e e aaeaaanns 31
1 I =G I PRSP PPPPRRN 31
BINT EXT 2. e e e e e e e e s e e e e e e e e eeeaaaeeaaanns 31
FINT _GLOBAL ..ottt e e e e e e e e st e e e e e e e e saanreaeeaaeeaenanns 33
BINT I2C e e e e e e e e 31
BINT LCD et e e e ee e e e e e e aeanas 31

178

C Compiler Reference Manual

Index
FINT _LOWYVOLT ...ttt ettt et e s nte e snte e e st e e snseesnaeeenneean 31
FHINT PSP ittt ettt et e et et e e re e ente e nnaeeeneeans 31
2 N = T RSP RSUSPRR 31
2 |\ I SO 31
FINT _RDA ..ottt et e et e e st e e e e s st e e e s ansaeeeeansseeesannseeeeannneens 31
LV I OSSP 31
LV IS 1S | S E 31
LV R = =SSOSR 31
FINT _TIMERD ...ttt ettt e et e e e s e e e snnneeesannnneeas 31
FINT_TIMERT .ottt et ee e ste e e et e e snseesnneeesnneaens 31
FINT_TIMERZ ...ttt e e re e st e et e snaeesseeesnneaens 31
HINT_TIMERS ...ttt et e et ee e st eeee e e snteesnneeeenneeens 31
FEINT XXX 1ttt ittt e et e e e e e et e e e e e s e st et e e e eaeeesesanbaaaeeeaeeasssanrraneeeeaeeaaann 31
T 1 ST SUSPR 34
FLOGCATE ...ttt ettt ettt e e st e e s nte e e teeesnteeeseeeanseesanaeesnneeans 34
FINOLIST ..ttt e et e e s st e e e e sste e e e ansteeeesanaeeeeanereeeeans 34, 35
O | RSO 35
10] (€ R UPRRPRSTRRR 35, 36
HPRAGMAttt ettt et e et e et e e e e e e anreeeeannaees 38
£ S []] I I SRS 38
HRESERVE ...ttt e et e e e e e annaee s 39
FEROM ...ttt ettt e et e st e e aae e aeeete e e e nee e s aaeeaneean 39, 40
HSEPARATE ...ttt ettt e e e et e e re e nnteeeraeeeneaens 40
2 I SRS 41
FEUNDEF ...ttt ettt e et e e s nte e s tee e snteeeseesnneeeesseeesnneeans 41
FUSE 12C ..ottt ettt ettt e et et e e re e e nnteesnaeeereeans 43
FUSE RS232.... . ettt ettt e et e e e e e e ae e e e annnaee s 44
FUSE DELAY ...ttt ettt ettt ettt e e et e e e et e e s enna e e e e annaeeeennnnaees 42
FUSE FAST 1O .. ittt sttt st e e e st e e e nnne e e s nnnneee s 42
FHUSE FIXED _TO ..ottt sttt et e s e e e e e s nnnneee s 43
HUSE STANDARD IO ..ottt sttt e e e s ennae e e s nnnneee s 45
HZERO _RAM ...ttt ettt et et et e e e e e nnae e e s ennnaee s 46
D AT E e 24
S 4 = SRR 38
CDEVICE i a e e e nees 26
1 = SRS 37
O 1 USRNSSR 37

A
AABS et —e et e e e e te e et et e ante e e reeeanteeanteeateeeanaeeareeans 59
O @ 5 USSR 59, 116

179

C Compiler Reference Manual

Index
ASIN L et e e et e e e e an e e e anneeens 59, 116
AT AN Lottt et e e bt e e et e e e et e e e e annaeens 59, 116
N O] N O SRR 59
B
BIT_CLEARttt ettt et e e et e e e e nbae e e e nnraeeeeennees 60
= S T PP 61
= O R = I RO 62
C
C Compiler Reference Manual..............ooceeiiiiiii e 1
C Statements and EXPreSSiONS.......cooi i 52
L | SRR 62
L0700 [T e 4 o1 o] L= PR 172
1070)2 01071 o | SRS RR 52
Common QUESHIONS AN ANSWETScoiuiiieiiiiiee e e ettt e e e seeeee e 139
ComPile OPLIONS.......eiiiiiieee e e e e e a e 10
Compiler Error MESSAQESuuviiiieeiiiiiiiiieiee et a e e 128
Copyright © 1994 2001 Custom Computer Services InC........ccccceeeviiciviieeeneennnn. 2
L7 1 SRR 63, 116
D
Data DefiNitioN..........eiiiiiiiieeee e 47
Data DefiNitioNSooiiiiiiie i 47
DELAY _CYCLES ...ttt e e e e e 63
DELAY MG ittt ettt et e ettt e et e e e ae e e e nraeeeeenees 64
[I A U RSP 64
Device Calibration Data ... 4
Direct Device Programmingc..eeeoiiiiioiiiee e 4
D143 (o] =T 4
DISABLE_INTERRUPTSottt ettt e e e 65
E
ENABLE_INTERRUPTS ...ttt st 66
EXamPle Programs..........eoi e 168
E X P e e e e e e e bae e e e e nteeeeanreeeeenres 67
EXPIESSIONSueiiiiiiiii e s 54, 56
EXT _INT_EDGE ..ottt et e e e e e e e e e e e nnrees 67
F
File FOrMALS ... 4
Fle MENU....coiiiii e e e e e e 6

180

C Compiler Reference Manual

Index
FLOOR ..ttt ettt ettt e et e e et e e e e st e e e e nbee e e e ennteeeeennees 68
FUNCHON DEfiNItiONeiiiiiiie e 50
G
(€] S 1 OSSPSR 69
GET_TIMEROD.....ciiiitiie ettt ettt e e et e e e et e e e enraee e e enees 69
GET_TIMERT ...ttt ettt e et e e e e e e e nraee e e enees 69
GET_TIMERRZ......co ettt et e e e e e s nrae e e e enees 69
GET_TIMERS ...ttt e ettt e e e et e e e et e e e nbae e e e ennees 69
GET_TIMERXciiiiiiiie ettt ettt ettt e e st e e e snbae e e e enbaee e e ennees 69
€] = I SRR 70
(€] 1 PSR 69
(€] O 7Y SRR 69
L] I TSR 70
H
HEIPD IMENU ... e e 14
How can a constant data table be placed in ROM?..........cccooiiiiiiiiiiiiiieeeeee 158
How can | pass a variable to functions like OUTPUT _HIGH ?..........cccccceeeen. 165
How can | use two or more RS-232 ports on one PIC?ccccoiiiiiiiiiiieneeen. 146
How can the RB interrupt be used to detect a button press?............ccccccceee. 159
How do | directly read/write to internal registers?cccccoviiiiniiniee e, 157
How do I do a printf to @ String? ... 166
How do | get getc to timeout after a specified time?...........cccccoiiiiiiiiiic . 164
How do | make a pointer to a function?cccooieiieii i 167
How do | put a NOP at location O for the ICD?cccooviviiiiiiiiiee e 166
How do | write variables to EEPROM that are not a byte?...........cccccovvieeeeennn. 163
How does one map a variable to an /O port?ccccceeee i 140
How does the compiler determine TRUE and FALSE on expressions?............ 153
How does the compiler handle converting between bytes and words?............. 152
How does the PIC connect 10 @ PC7? ... 147
How does the PIC connect to an 12C device?ccoiiiiiiiiiiieeeeeeeeee 155
How is the TIMERO interrupt used to perform an event at some rate? 151
|
124 @ o I PR 71
D24 O = I PR 71
D24 S I o SRR 72
D2 S Y O L SRR 73
D2 O T I =SSR 74
INPUT ettt e e s e e s et e e e e e ette e e e ssteeeesasseeeesnseneeeeanseeaenns 74,75
IN P U T A ettt et e et e e e st e e e s ae e e e e asnteeeeansaeeeeansteeeeannsaeeeennneees 75
1L = T USSR 75

181

C Compiler Reference Manual

Index
INPUT _C ettt sttt ettt nn e e nnn e e naneeaas 75
INPUT_D ettt sttt ettt sn e e nnn e e nanee e 75
INPUT _E et sb e e nnn e nnee e 75
1N O RSP RTSUSRRR 75
INSTAIIALION ... e 2
Instead of 800 the compiler calls 0. Why? ..., 156
Instead of A0 the compiler is using register 20. Why?.......ccccoviiiiinineenn, 156
Invoking the Command Line COMPIIEr...........ooiiiiiiiiiiiie e 2
ISALNUDM CRha ..ottt et e et e et e e sneeeenaeeesneeeens 77
ISALPHA ettt 77
ISAMOUNG ..ottt sttt ab e sre e e nnee e 76
ST [PSSP PP P OPPPPTRUPPRPRPN 77
ISLOWER. ...ttt ettt e sne e e e 77
ISSPACE ...ttt 77
ISUPPER.....cc ettt sttt ettt en e nnn e 77
153 1 ST SRSUSRRRI 77
K
KBHIT ettt st rb e b et s e nnneenree e 78
L
LA B S .ttt ee e e eaee e e te e e a e e e aateeeateeeanneeanreeeanneeeaneean 79
LCD _LOAD ..ttt ettt et ettt e ae e eate e te e e enneeanneeenneeeaneean 79
LCD_SYMBOL ...ttt ettt e st e e e ente e e eae e e naneesneeeeaneeeeneeeans 80
IO 1 T O PSSP PP PUPPUPRPPRN 81
LOGT0 .ttt 81
M
IMEMGCPY ...ttt ettt et e e et e et e e aate e e te e e eneeeanne e e anneeennean 82
IMEMISET ... ettt ettt e et e e et e et e e enteeeneeeanneeanseeeanneeanneans 83
MPLAB INtEGrationouuiiiiiiiii e 3
o
OPHONS MENU ...ttt 8
L@ 1 8 I O USSR 86
L@ 10 8 I O = S 86
L@ 10 8 I O = 0 ST 83
L@ 10 8 I O OSSR 86
L@ 10 8 I U 5 S 86
L0 10 8 I O SR 86
OUTPUT _FLOAT ..ttt ettt 84
OUTPUT_HIGH .ottt 85

182

C Compiler Reference Manual

Index
OQUTPUT _LOW L.ttt et e e e e e e e st e e e e e e e s eanrrreeaaaeeas 85
OVEBIVIBW ... 1
P
PCB PCM and PCH OVEIVIEWuueieeeeeeeeeeee e 1
1 S 1
4 1
POM i aeanaeaeaaaeaaans 1
PCW Editor C FEALUIES........uuuueeeieieiiiiii e nan 8
POW IDE it an e e ananaans 6
PCW OVEIVIEWuuuiiiiiiiiiiiiiii e anans 1
PORT B PULLUPS ..o 87
[11T 87
Pre-Processor DIr€CHVEScoooe e 19
PRINTE oottt e e a e e ns 88
Program SYNTAXoeoiiiiiiieiee e 52
ProOjECt MENUcoiiiiiiiie et 7
ProjJeCt WizZard....... ... s 17
PSP _INPUT _FULL oottt e e e e e e eeaa e 89
PSP _OUTPUT _FULL ..ottt e e eaa e 89
PSP _OVERFLOW ..ottt e et e e e e e e e e eeaaaeean 89
[1 O 90
PUTCHAR ...ttt e e e e ns 90
P U T S e e e e aeanaeanns 91
R
READ _ADC ... ettt ettt e e e et e e e e e e e e e e e e e e raraeaaaeeas 91
READ _BANK ...ttt e e e e et e e e e e e e e st e e e e e e e e e e rarreaaaaeas 92
READ_CALIBRATION ...ttt ettt e e e e e e e e aeaaaeean 93
READ_EEPROM.....ooeiiiiiii ettt e e e e e e e s e e e e e e e e e e eeaaa e s 94
READ _PROGRAM EEPROM......cco o 94
Reference ParameEtersccoooe oot 51
] = O = U R 95
RESTART _CAUSE ..o 95
RESTART WD ..o aa e 96
O I I = I S 97
ROTATE_RIGHT ..ottt e e e e e e raeaeaa e e as 98
S
SET ADC CHANNEL ... 98
Y = I AT, 1O I I 99
Y = I AT 2 16 I I 99
] = I 5 O O RS 100

183

C Compiler Reference Manual

Index
SET_TIMERD ...ttt 100
SET_TIMERT <.ttt 100
SET_TIMERZ ...ttt 100
SET_TIMERS ...t e e s nbe e e e 100
SET T RIS A e e e e e nr e e e 101
SET_TRIS B e e 101
SET_TRIS_C et e e e e 101
SET_TRIS_ D ittt e e e e 101
SET _TRIS _E .. e e e 101
SET_UART_SPEED ..ottt 102
SETUP_ADC MOGE.....cutiiiiiieiiiieitiee sttt sttt nne e s 103
SETUP_ADC_PORTS ...ttt 103
SETUP _CCP .ttt ettt 104
SETUP_CCPZ.....coei ettt 104
SETUP_COMPARATORooiiiiiiitite ettt 105
SETUP_COUNTERSo 106, 107
SETUP_LCD ...ttt e s e e e 107
SETUP_PSP ..t 108
SETUP_SPI ... e 109
SETUP_TIMER _Doiiiiiiiie et 109, 110
SETUP_TIMER _T ..ttt 110, 111
SETUP_TIMER _2 ...ttt 111
SETUP_TIMER _3 ... ottt 112
SETUP_VREF ...t e 113
SETUP _WDT ...ttt ettt 113
SHIFT _LEFRT <ot 114
SHIFT _RIGHT ..ot e e 115
]| PP PPP TP PPPPPPRR 116
SLEEP e 117
Software License Agreementc.eoi i 177
SPI_DATA IS _IN ittt s e e nee e e e 117
SPI_READ ... e 118
SPI_WRITE ...t 119
SR T et 119
STANDARD STRING FUNCTIONS ..ottt 120
ST R C AT ettt 120
STRCHR .ttt 120
STROCMP .ttt e e 120
STRECPY ettt e e 123
STRICMP ..t e e e e sb e e e aabeeeeeas 120
STRLEN .t b e sb e e e e rabeee e 120
STRLWR ettt e e e rabe e e 120
STRNCMP.....e et e e s sabe e e 120

184

C Compiler Reference Manual

Index
STRNCPY ettt e e e et e e e ettt e e e aabee e e e sbeeeeesanreeeeens 120
STRPBRIK ...t et e et e e e ettt e e e sbe e e e e snreeeeens 121
STRROCHR ..t e ettt e e sttt e e e sbeee e e snreeeeeans 120
S I S N RS URRRSPRRR 120
STRSTR ..ottt s e e e st e e e et e e e e sasteeeesabeeeeesraeeeeeanraeaeans 121
ST RTOK .ttt e e e sttt e e e st e e e e eesteeeesastaeeesasteeeesasseeaeesnseeaanns 121
SWV AP e et e e et e e e e —ae e e aanta e e e aanraeaeearaeaeeans 123
T
172 PR 116, 124
TeChNICAl SUPPOIT ... e e e e e e e e s rr e e e e e e e e ennrnneees 2
TOLOWER ...ttt ettt et e st e e et e e e e e e e ensae e e s ennnaeens 124
Lo 20 1YL= o T 12
TOUPPER ...ttt ettt et e e e sttt e e e et eesennaeeesansseeaesnnneeens 124
U
ULIlIEY PrOgramsS e e 5
\'
VIBW IMBNU. ...ttt e e e e e e s e e e e e e e e e e eeeeeaaeeaanns 10
w
What are the restrictions on function calls from an interrupt function?.............. 154
What can be done about an OUT OF RAM €rror? ... 149
What is an easy way for two or more PICs to communicate? 162
What is the format of floating point numMbers? ..., 160
Why do | get an OUT OF ROM error when there seems to be ROM left? 148
Why does a program work with standard I/O but not with fast I/O? 142
Why does the .LST file ook out of order?.........ccccceeeeveiiiiiiie e 150
Why does the compiler show less RAM than there really is?...........ccc..ccouneee 161
Why does the compiler use the obsolete TRIS?.........cccoveiiieeiiiiiiieeee e, 155
Why does the generated code that uses BIT variables look so ugly?............... 143
Why is the RS-232 not working right?..........ccoveiiiiiiiiieeee e, 144
WRITE_BANK ...ttt e et e et e e e st e e s ennneeees 125
WRITE_EEPROM ..ottt ettt et e e nnee s 126
WRITE_PROGRAM_EEPROM ...ttt ettt 126

185

