Chapter 02 전기전자회로의 기초

2.1 단위시스템

SI 단위 (Systeme International d'Unites, International System of Units)

* 기본 및 보조단위

구분		단위명, 기호	
기본단위	길이	meter (m)	
	질량	kilogram (kg)	
	시간	second (s)	
	전류	ampere (A)	
	온도	kelvin (K)	
	농도	mole (mol)	
	광도	candele (cd)	
	평면각	radian (rad)	
보조단위	단위입체각	steradian (sr)	

기본량

중력단위계 m, s, kgf M.K.S. 단위계 m, s, kg C.G.S. 단위계 cm, s, g

* SI 접두어

인자	명칭	기호	인자	명칭	기호
10 ²⁴	yota	Y	10 ⁻²⁴	yocto	У
10 ²¹	zeta	Z	10 ⁻²¹	zepto	Z
10 ¹⁸	exa	Е	10^{-18}	atto	а
10 ¹⁵	peta	Р	10^{-15}	femto	f
10 ¹²	tera	Т	10 ⁻¹²	pico	р
10 ⁹	giga	G	10 ⁻⁹	nano	n
10^{6}	mega	M	10^{-6}	micro	μ
10^{3}	kilo	k	10^{-3}	milli	m
10^{2}	hecto	h	10^{-2}	centi	С
10 ¹	deca	da	10^{-1}	deci	d

2.2 전하, 전류, 전압

* 전하, 전류 원자 모형

전자가 갖는 전하량; $q = -1.602 \times 10^{-19} C$

* Fe₂₆ Cu₂₉ Au₇₉

전류: 전하의 이동

$$i = \frac{\Delta q}{\Delta t} [C/s],$$
 $1A = 1[C/s]$

전류의 방향 <-> 전하의 흐름의 반대방향

* 전압

$$1 V = 1 \frac{joule}{coulomb} [J/C]$$

전압, 전위차; 한 점에서 다른 점으로 전하를 이동시키는 전기적인 힘 electro motive force; EMF

source (소스) : 에너지를 공급하는 소자 load (부하) : 에너지를 소모하는 소자

접지: 전위차(전압의 기준)

2.3 저항과 옴의 법칙

이상 저항기 (ideal resistor)

$$V = IR$$

$$R = \frac{V}{I} [\Omega]$$

resistivity (비저항) ho conductivity (전도율) σ

$$R = \rho \frac{l}{A} [\Omega]$$
 그림 2.29

소모전력: P

$$P = VI = I^2 R = V^2 / R$$

저항코드: 그림 2.31 구리선 저항: 표 2.3

개방회로 (open circuit)

단락회로 (short circuit)

키르히호프 전류법칙

하나의 노드에서 전류의 합은 영 (zero) 이다. 노드로 들어가는 전류: -노드에서 나오는 전류: +

키르히호프 전압법칙

폐회로 주위를 따라서 전압의 합은 영 (zero) 이다.

부하: 전압 강하 소스: 전압 상승

* 직렬 저항과 전압 분배 법칙

등가저항:

예제 2.11)

* 병렬 저항과 전류 분배 법칙

등가저항:

예제 2.12)

예제 2.13)

예제 2.14)

2.4 ideal capacitor;

유전체로 격리된 평행한 전도체 평판

유전체 (dielectric)

전기도체가 아니고, 전기장에서 극대화 되는 전기 양극 (dipole)을 많이 포함하는 물질이다.

Q[C] = C[F] * V[V]

평판 콘덴서;

$$C = \frac{\epsilon A}{d}$$
 ($\epsilon = 8.854 \times 10^{-12} \ F/m$ permittivity of air)

capacitance; F Farad, μF , pF

* 실물 콘덴서: 정격, 용량 읽는 법

 $103 = 10 \times 10^3 \text{ pF}$

82: 82 pF

$$i(t) = C \frac{dv(t)}{dt}$$

$$v_c(t) = \frac{1}{C} \int_{-\infty}^{t'} i_c(t') dt'$$

capacitor 병렬연결

capacitor 직렬연결

예제 4.1

예제 4.2

$$v(t) = 5 (1 - e^{-\frac{t}{10^{-6}}})$$

 $C = 0.1 \mu F$

실제 capacitor

최대전압 주파수 범위

丑 4.1

2.5 ideal inductor

절연체 또는 철심 주위에 전선을 감아서 만든 것
* 도체에 전류가 흐르면 주위에 자기장 발생: Faraday 법칙

그림 4.10

iron core, toroidal core

용량 읽는법: *H, mH, μH* 470: 47 *μH*

공기중 투자율: $\mu_0 = 4\pi \times 10^{-7}$

solenoid의 self inductance:

원통형 코일의 인덕턴스 L, 장강계수 k, 투자율을 μ , 코일의 감은수(권선수)를 N, 코일의 단면적을 S, 코일의 축방향 길이를 l;

$$L = k \frac{\mu N^2 S}{l} [H]$$

장강계수 k;

코일의 직경(D)와 코일의 길이(l)의 비율로 정해지는 값

D/l	K	D/l	K
0	1.000	1.0	0.688
0.1	0.959	2.0	0.526
0.2	0.920	3.0	0.429
0.3	0.884	4.0	0.365
0.4	0.850	5.0	0.320
0.5	0.818	6.0	0.285
0.6	0.789	7.0	0.258
0.7	0.761	8.0	0.237
0.8	0.735	9.0	0.219
0.9	0.711	10.0	0.203

주) 길이 단위는[m]입니다.

그림 4.10)

$$v_L(t) = L \frac{di_L(t)}{dt}$$

L: self inductance [H] Henrys $1H=1\,V/(A/s)$

$$i_L(t) = \frac{1}{L} \int_{-\infty}^{t'} v_L(t') dt'$$

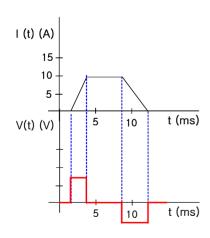
코일 직렬연결

$$L = L_1 + L_2 + L_3$$

$$\begin{split} v_L(t) &= L_{eq} \frac{di_L}{dt} = L_1 \frac{di_L(t)}{dt} + L_2 \frac{di_L(t)}{dt} + L_3 \frac{di_L(t)}{dt} \end{split}$$
 (전류가 같다.)

코일 병렬연결

$$\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$$


$$i = i_1 + i_2 + i_3$$

$$i_{1} = \frac{1}{L_{1}} \int \!\! v\left(t\,\right) dt \;\;,\;\; i_{2} = \frac{1}{L_{2}} \int \!\! v\left(t\,\right) dt \;\;,\;\; i_{3} = \frac{1}{L_{3}} \int \!\! v\left(t\,\right) dt$$

$$i = \frac{1}{L_{eq}} \int v(t) dt = \frac{1}{L_{1}} \int v(t) dt + \frac{1}{L_{2}} \int v(t) dt + \frac{1}{L_{3}} \int v(t) dt$$

(전압이 같다)

예제 4.5

스위칭 시에 역기전력 발생

악영향: 역기전력에 의하여 노이즈 발생, 또는 기기 손상 예) 전구가 스위치를 켤 때 고장난다.

이용: 형광등 스타트 전구 자동차 점화 코일

2.6 시간종속 신호소스

시간에 따라 변하는 전압, 전류, 정현파 신호 (sinusoidal source)

그림 4.16

periodic signal (주기신호)

그림 4.17

$$x(t) = A\sin(\omega t + \phi)$$

A: 진폭 (amplitude)

 ω : 각주파수 (radian frequency)

φ: 위상 (phase)

$$\omega = 2\pi f \text{ (rad/s)}$$

$$\phi = 360 \frac{\Delta t}{T}$$

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

평균값 (average) 과 실효값 (RMS value)

평균값

$$\langle x(t) \rangle = \frac{1}{T} \int_{0}^{T} x(t')dt'$$

실효값

$$x = \sqrt{\frac{1}{T} \int_0^T x^2(t') dt'}$$

그림 4.20

$$\begin{split} W &= T P_{AV} = T < p\left(t\right) > = \int_{0}^{T} p\left(t'\right) dt' = \int_{0}^{T} R i_{ac}^{\ 2}(t') dt' \\ &= I_{eff}^{2} R T \\ I_{eff} &= \sqrt{\frac{1}{T} \int_{0}^{T} i_{ac}^{\ 2}(t') dt'} = I_{rms} \end{split}$$

2.7 에너지 저장 소자 (동적회로)를 포함하는 회로의 예

그림 4.21

전류를 이용한 식 (KCL)

$$i_{R}(t) = \frac{v_{s}(t) - v_{c}(t)}{R} = i_{c}(t) = C \frac{dv_{c}(t)}{dt}$$

$$\frac{dv_{c}(t)}{dt} + \frac{1}{RC}v_{c}(t) = \frac{1}{RC}v_{s}(t)$$
(4.30)

전압을 이용한 식 (KVL)

$$v_s(t) = Ri_c(t) + \frac{1}{C} \int_{-\infty}^{t} i_c(t') dt'$$
 (4.32)

$$\frac{di_c(t)}{dt} + \frac{1}{RC}i_c(t) = \frac{1}{R}\frac{dv_s(t)}{dt}$$
 (4.34)

정현파 신호에 대한 강제응답

$$v_s(t) = V \cos(\omega t)$$

$$v_c(t) = A\sin(\omega t) + B\cos(\omega t)$$

식 (4.30) 에 대입하여 A, B를 구한다.

$$A = \frac{V\omega RC}{1 + \omega^2 (RC)^2}$$

$$B = \frac{V}{1 + \omega^2 (RC)^2}$$

(LO3) 주파수, 진폭, 위상 (Phase)