제 5 장 변위와 치수 측정

5.1 서론

(참고문헌 1; 표 11.1)

- (1) 저분해능 장치 (1/100 in, ~ 0.25 mm) 강철자 캘리퍼스
- (2) 중 분해능 장치 (1/10,000 in, ~ 2.5x10⁻³ mm) 마이크로미터 버어니어 게이지 한계게이지
- (3) 고분해능 장치 (수 μin, ~ 2.5x10⁻⁵ mm) 게이지 블록과 직접 비교하는 비교 측정기 사용
- (4)초고분해능 장치 레이저 간섭계

5.2 치수 측정에서의 문제

마모 접촉력 온도변화

5.3 Gage Block

(1) 개요

스웨덴 요한슨(Johanson) 개발 특수공구강- 열처리-연삭-래핑-정마

재료;

초경

ceramic

중앙치수; 측정면의 중심에서 측정 최대치수-최소치수

Gage Block의 특징

- 광파장으로부터 직접 길이를 결정할 수 있다.
- 표시하는 길이의 정도가 매우 높다. (0.01 µm)
- 측정면이 서로 밀착되는 특성을 가지고 있어 몇 개의 수로 많은 치수의 기준이 얻어진다.
- 사용이 편리하다.

(2) 게이지 블록의 등급 및 규격

* Gage Block의 등급

등 급		사 용 목 적		
참조용 00		표준용 블록게이지의 정도 검사		
		정밀학술 연구용		
표준용 0		검사용, 공작용 블록게이지의 정도점검, 측정기류의		
37.6.0	O	정도검사		
		게이지의 정도 검사		
검사용 1	1	기계부품 및 공구 등의 검사		
		게이지의 제작		
공작용	2	측정기류의 정도 조정		
		공구, 절삭공구의 장치		

* Gage Block 규격

정도 사양: ASME B89.1.9-2002 (미국)

공칭 길이 (mm)		K급		00 급		0급		1급		2급	
		치수공차	허용치수면차	치수공차	허용치수편차	치수공차	허용치수편차	치수공차	허용지수편차	치수공차	허용치수편차
	0.5 이하	±0.30µm	0.05µm	±0.10µm	0.05µm	±0.14µm	0.10µm	±0.30µm	0.16µm	±0.60µm	0.30µm
0.5 초과	10 이하	±0.20µm	0.05µm	±0.07μm	0.05µm	±0.12µm	0.10µm	±0.20µm	0.16µm	±0.45µm	0.30µm
10 초과	25 이하	±0.30µm	0.05µm	±0.07µm	0.05µm	±0.14µm	0.10µm	±0.30µm	0.16µm	±0.60µm	0.30µm
25 초과	50 이하	±0.40µm	0.06µm	±0.10µm	0.06µm	±0.20µm	0.10µm	±0.40µm	0.18µm	±0.80µm	0.30µm
50 초과	75 이하	±0.50µm	0.06µm	±0.12µm	0.06µm	±0.25µm	0.12µm	±0.50µm	0.18µm	±1.00µm	0.35µm
75초과	100 이하	±0.60µm	0.07µm	±0.15µm	0.07µm	±0.30µm	0.12µm	±0.60µm	0.20µm	±1.20µm	0.35µm
100 초과	150 이하	±0.80µm	0.08µm	±0.20µm	0.08µm	±0.40µm	0.14µm	±0.80µm	0.20µm	±1.60µm	0.40µm
150초과	200 이하	±1.00µm	0.09µm	±0.25µm	0.09µm	±0.50µm	0.16µm	±1.00µm	0.25µm	±2.00µm	0.40µm
200초과	250 이하	±1.20µm	0.10µm	±0.30µm	0.10µm	±0.60µm	0.16µm	±1.20µm	0.25µm	±2.40µm	0.45µm
250 초과	300이하	±1.40µm	0.10µm	±0.35µm	0.10µm	±0.70µm	0.18µm	±1.40µm	0.25µm	±2.80µm	0.50µm
300 초과	400 이하	±1.80µm	0.12µm	±0.45µm	0.12µm	±0.90µm	0.20µm	±1.80µm	0.30µm	±3.60µm	0.50µm
400 초과	500 이하	±2.20µm	0.14µm	±0.50µm	0.14µm	±1.10µm	0.25µm	±2.20µm	0.35µm	±4.40µm	0.60µm
500 초과	600 이하	±2.60µm	0.16µm	±0.65µm	0.16µm	±1.30µm	0.25µm	±2.60µm	0.40µm	±5.00µm	0.70µm
600초과	700 이하	±3.00µm	0.18µm	±0.75µm	0.18µm	±1.50µm	0.30µm	±3.00µm	0.45µm	±6.00µm	0.70µm
700초과	800이하	±3.40µm	0.20µm	±0.85µm	0.20µm	±1.70µm	0.30µm	±3.40µm	0.50µm	±6.50µm	0.80µm
800 초과	900 이하	±3.80µm	0.20µm	±0.95µm	0.20µm	±1.90µm	0.35µm	±3.80µm	0.50µm	±7.50µm	0.90µm
900 초과	1000이하	±4.20µm	0.25µm	±1.00µm	0.25µm	±2.00µm	0.40µm	±4.20µm	0.60µm	±8.00µm	1.00µm

* 별도의 성적서 첨부됨.

K급은 레이저인터페로미터를 사용한 성적서 첨부.

Gage Block Set (예)

크기 (mm)	스텝 (mm)	수량 (ea)	
1.005		1	
1.001 - 1.009	0.001	9	
1.01 - 1.49	0.01	49	
1.6 - 1.9	0.1	4	
0.5 - 24.5	0.5	49	
30 - 100	10	8	
25, 75		2	
		122	

크기 (mm)	스텝 (mm)	수량 (ea)
1.005		1
1.01 - 1.19	0.01	19
1.2 - 1.9	0.1	8
1 - 9	1	9
10 - 100	10	10
		47

Gage Block 교정실 표준

등급	측정실의 온도	정밀도 μ m	검사주기	
00	20 °C ±0.2 °C	0.06 <i>μ</i> m이하	1회	
0	20 C ±0.2 C	0.00 µm - 0	4회	
1	20 °C ±0.5 °C	0.00 (m이) 최	2회	
2	20 °C ±1 °C	0.08 <i>µ</i> m이하		

사용법; 표면의 방청유를 휘발유로 세척 밀착시켜서 사용

휘발유로 세척, 방청유를 도포

(3) 게이지 블록의 조립

(참고문헌 1; Fig. 11.4)

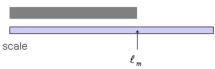
(4) 게이지 블록 보조 장치

5.4 정반 (Surface Plates)

주철

화강암

오래된 것으로 잔류응력이 적다 공구의 충격에 휘어지지 않음 (잔류응력이 없음) 부식되지 않음


5.5 온도 변화가 길이측정에 주는 영향

표준측정온도 20°C (68°F)

* 온도의 영향

길이측정의 표준온도 ; 20°C 프랑스 미터원기; 0°C 기준

object

 $lpha_1$; 측정기 재료의 열팽창 계수

 α_2 ; 피측정물의 열팽창계수

 \mathbf{t} °C에서 읽은 scale 의 눈금 ℓ_m 의 실제길이: $\ell_m + \ell_m \cdot \alpha_1 \cdot (t-20)$ 표준 온도 20°C에서 길이 L 인 물체의 \mathbf{t} °C에서 길이: $L + L \cdot \alpha_2 \cdot (t-20)$ $\ell_m + \ell_m \cdot \alpha_1 \cdot (t-20) = L + L \cdot \alpha_2 \cdot (t-20)$

그러므로

$$\begin{split} L &= \ell_m \frac{(1 + \alpha_1 \cdot (t - 20))}{(1 + \alpha_2 \cdot (t - 20))} \\ &\simeq \ell_m \left(1 + (\alpha_1 - \alpha_2) \cdot (t - 20)\right) \end{split}$$

5.6 비교측정기 (Comparator)

(1) 비교 측정 방법

dial gage-block gage Go-Stop gage의 교정

예제) 블록게이지와 다이얼 게이지를 이용하여 비교측정한다.

공칭치수 10 mm 인 블록게이지를 사용하여, 다이얼게이지의 0점을 세팅하고, 블록게이지를 빼고, 그 자리에 물체를 놓고 다이얼 게이지로 길이를 측정하였을 때 다이얼 게이지의 눈금이 15 mm 이다.

블록게이지 길이 오차는 2 이고, 다이얼게이지의 오차는 -1 미이다. 이때 물체의 실제 길이는 얼마인가 ?

옵셋은 더하고, 측정 오차는 빼준다.

블록게이지 공칭치수 10 mm, 다이얼 게이지 측정된 길이 15 mm 라면,

=> 물체의 길이는 10 + 15 mm

그러나

블록게이지의 실제 길이는 (공칭치수 + 블록게이지 치수오차) 0점으로 세팅된 위치부터 읽은 대상물체의 실제 길이는 (다이얼 게이지 읽은 값 - 측정 오차),

대상물의 전체의 실제 길이=(0점부터 측정된 물체의 실제 길이 + 블록게이지의 실제 길이)

따라서

블록게이지의 실제 길이는 (10 + 2 \mum) 0점으로 세팅된 위치부터 읽은 대상물체의 길이는 (15 - (-1 \mum)) 이므로, 대상물의 전체 실제 길이는 (10 + 2 \mum)+(15 - (-1 \mum))

(2) 공압식 비교 측정기

경험식 (Graneek)

$$(\frac{A_2}{A_1})^2 = \frac{P_s}{P_i} - \frac{P_i}{P_s}$$

$$\frac{O_i}{P_s} = 1.10 - 0.50 \frac{A_2}{A_1}$$

Remark)

공기마이크로미터

치수의 변화 <-> 공기의 유량 또는 압력의 변화 유량식, 배압식, 진공식

저압식: 0.05 ~ 0.2 kgf/cm²

중압식: 2.0 kgf/cm²

고압식: 2.0 kgf/cm² 이상

* 유량식 공기 마이크로미터

노즐과 물체사이의 면적에 따라 유량이 변화 $Q \propto \pi dh$ 틈새의 크기 h 가 0.015mm 까지는 마찰의 영향 틈새의 면적 πdh 가 $\pi d^2/4$ 와 유사할 때 비선형성 발생

* 배압식

유량변동에 따른 관 내부의 압력을 측정; 수은주, 벨로우즈, Bourdon관

* nozzle-flapper 방식

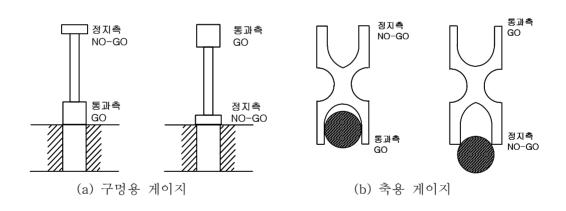
$$\begin{split} Q &= c_1 s_1 \sqrt{\frac{2g(p_1 - p_2)}{\gamma}} \\ &= c_2 s_2 \sqrt{\frac{2gp_2}{\gamma}} \\ s_1 &= \frac{\pi d_1^2}{4}, \quad s_2 = \pi d_2 h \\ &= > \frac{p_2}{p_1} = \frac{1}{1 + (\frac{c_2 s_2}{c_1 s_1})^2} \\ &= \frac{1}{1 + (\frac{4c_2 d_2}{c_1 d_1})^2 h^2} \end{split}$$

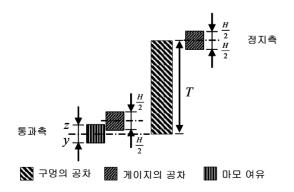
- 압력조절기의 정확도가 영향을 줌.
- 작은 내경측정에 사용 가능

5.7 측정 공구

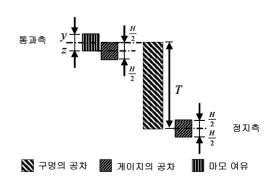
(a) 자 및 표준자

재료; 58% 니켈강, 강 과 같은 팽창율의 유리

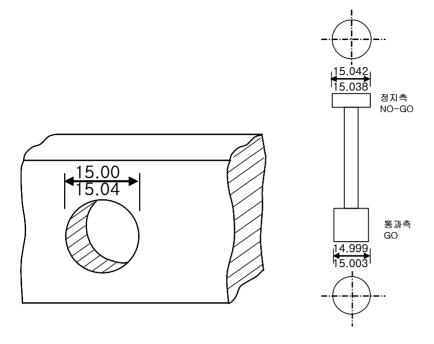

X, H, U형


(b) 표준게이지

- * 표준원통게이지 플러그 게이지/링 게이지
- * 표준나사게이지 원통형 게이지 형태에 나사가 되어있다. (plug/ring gage)
- * 표준테이퍼게이지 원통형 게이지 형태에 테이퍼가 되어있다.


선반; 모오스(Morse taper) 밀링; Brown & Sharpe taper

* 한계게이지



(d) 축용 게이지 치수

- * 간극(thickness) 게이지 미세한 간극을 측정 0.03mm ~ 0.5mm
- * 반지름(radius) 게이지 반경측정
- * center 게이지
- * 피치게이지 나사의 피치검사용, 기어의 치형 검사용
- * wire gage 선재의 지름을 측정 번호가 큰 것->지름이 작다.
- * drill gage 드릴의 직경검사

(c) 각도의 표준 및 공장용 표준기

각도: 원주의 길이와 원의 반지름의 비 유도단위

(c-1) 각도게이지

* Johansson형의 각도게이지 (50mm X 20mm X 1.5mm) 85개 또는 49개 정밀도; ±12"

10° ~ 11°1'식 15개, A형 0° ~ 90°1' 식 40개 ; A형 7개, B형 33개 89° ~90°1' 식 30개 C형

사용법; 2장씩 맞대어서 사용 1' 또는 5' 간격 (정밀도 ±24') 10° 이하, 350° 이상은 1° 간격으로

* NPL형 각도게이지 1941, G.A.Tomlinson

> 41°, 27°, 9°, 3°, 1°, 27′, 9′, 3′, 1′, 30″, 18″, 6″ 밀착방향을 바꾸면 각도를 +, 또는 -

(c-2) Polygon거울

측면을 정밀하게 가공 8면체, 12면체

(c-3) 각자(square)

(c-4) 눈금원판

5.8 측장기

5.8.1 측정용 현미경

- 1) Fixed scale microscope
- 2) Fillar microscope
- 3) Traveling & traveling-Stage microscope
- 4) Draw tube microscope
- 5) 초점맞춤 (focusing)

Tool Scope (측정현미경)

5.8.2 측장기

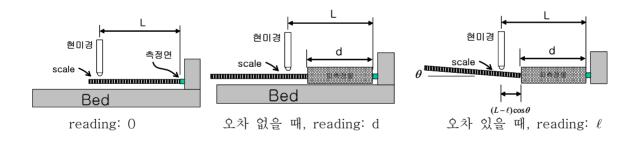
(a) 일반구조

표준자, 미끄럼대, 측미현미경, 지지장치, 측정대

앤빌 사이에 피측정물을 삽입하고, 눈금을 읽어서 길이를 측정

(b) Abbe's comparator principle

표준자의 눈금면과 측정축이 일치하는 구조 => 베드의 오차영향이 적다.


"시선에 대해 직각인 방향으로 측정을 행할 때에는, 현미경을 이동시키지 말고 피측정물을 움직 여서 측정해야 한다."

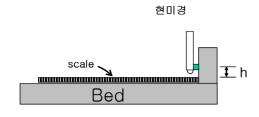
(i) Abbe의 원리에 의한 측장기

L: 측정면과 현미경간의 거리

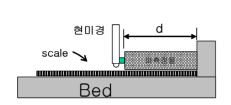
d : 물체의 길이

ℓ: 현미경으로 읽은 눈금

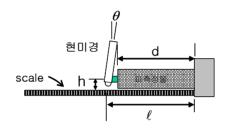
 $d-\ell$; 측정오차


$$(L-\ell)\cos\theta + d = L$$

 $\theta \ll 1$ 이므로


$$d-\ell = (L-\ell)\theta^2/2$$

(ii) Abbe의 원리에 맞지 않는 측장기


현미경이 d 만큼 이동할 때 θ 만큼 기울어지면 h: 측정축선과 표준자 눈금면 간의 거리

reading: 0

오차 없을 때, reading: d

오차 있을 때, reading: ℓ

측정 오차:

$$\begin{array}{l} \ell - d = h \tan \theta \\ \simeq h \cdot \theta \end{array}$$

예제) 다음의 각각의 경우에 허용할 수 있는 경사각도는 ?

(i) Abbe의 원리에 의한 측장기

L=150mm; 측정면과 눈금자의 영점거리 d=100mm

오차 $d-\ell$ =0.1 μm

 $1rad = 360^{\circ}/2\pi \times 60 \times 60 = 2.06 \times 10^{5} \text{sec}$

$$d-\ell = (L-\ell)\theta^2/2$$
 으로부터

$$\theta = 2.06 \times 10^5 \sqrt{2(d-\ell)/(L-\ell)}$$
$$= 2.06 \times 10^5 \sqrt{2 \times 0.0001/(150-100)}$$
$$= 400$$

(ii) Abbe의 원리가 아닌 측장기

h=50mm

$$d-\ell = h \tan \theta$$
 로부터 $\simeq h \cdot \theta$

$$\theta = \frac{d-l}{h}$$

=0.0001/50

$$=2x10^{-6}$$
rad

$$=2x10^{-6}x2.06x10^{5}$$

= 0.4"

아베의 원리의 적용

* 선반공구대의 위치결정

정밀가공을 위해서 공구 끝 날의 위치를 정확하게 결정해야함 가로이송대의 위치는 핸들주위의 눈금과 이송대의 축이 일치하기 때문에 아베의 원리에 맞음 공구 끝 날의 위치는 가로이송대의 중심에서 높이 h 만큼 떨어져 있음.

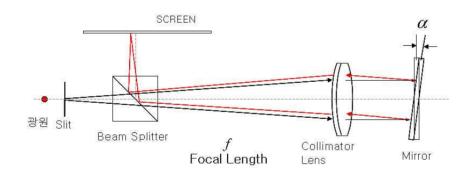
눈금선, 공구 끝날, 공작물의 중심이 같은 평면상에 있을 때에 고정도의 위치결정이 가능 3차원측정기에서 상하방향 (Z)축은 아베의 원리에 맞으나 X, Y축은 맞지 않음.

5.9 Autocollimator

대형 기계의 제작, 조립 (참고문헌 1; section 11.16)

alignment telescope collimators autocollimators accessory

> 초점에 눈금있는 유리판 배치하고 렌즈로 평행광을 얻는 장치 오토콜리메이션 현미경


straightness, parallelism, tilt; milling table

flatness : 정반

position uncertainty : index table 의 회전각도

squareness : 밀링의 스핀들 축

centering, adjustment : 선반의 주축 angle measurement : 프리즘의 직각도

$$d = \tan(2\alpha) \cdot f$$
$$\approx 2 \cdot \alpha \cdot f$$

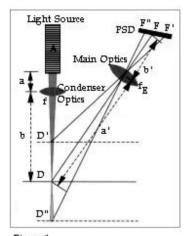
- 육면체의 직각도 검사 펜타프리즘 사용

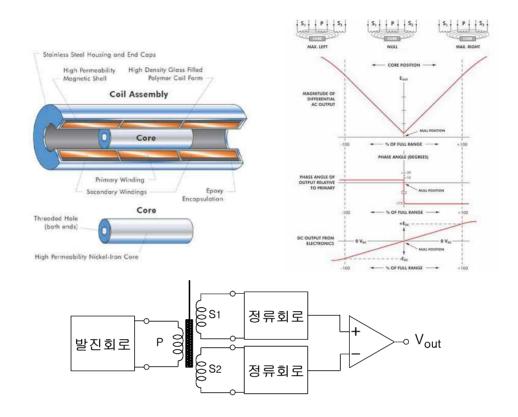
http://www.moeller-wedel-optical.com

5.10 투영기 http://www.mitutoyokorea.com/

5.11 공구현미경

5.12 삼각법을 이용한 변위 측정기




Figure 1.
The triangulation probe.

$$\frac{1}{a'} + \frac{1}{b'} = \frac{1}{f_E}$$

5.13 미끄럼 접촉장치

5.14 Differential Transformer

Linear Variable Differential transformer (LVDT)

1차코일에 교류전압 인가; 5kHz, (400Hz ~ 50KHz) 2차코일의 유기전압 e₁, e₂의 차이를 이용

직류LVDT;

transistor 발진기와 정류기를 내장

장점;

측정법위가 넓음; 0.01mm ~ 100mm 측정정도, 감도, 직선성, 내구성등이 우수 1차 변환만 한다. (2차변환이 필요없음) 기계적 과부하가 없음, 절연, frictionless 온도에 민감하지 않음 높은 출력 (증폭작용 필요없음)

unique feature of LVDT

- o frictionless
- o infinite mechanical life
- o infinite resolution
- o null repeatability no drift
- o complete isolation

단점;

철심의 무게가 크다. (동특성이 불량)

이용례;

- 오리피스식 유량계
- 면적식 유량계; float이용
- 판두께의 측정
- 하중계; 힘에 의한 스프링변형을 LVDT로 측정

5.15 Surface roughness 측정

stylus

laser (non-contact)

* 표면거칠기의 표시

평균거칠기; Ra (미국규격)

$$R_a = \frac{1}{L} \int_0^L |z(x) - h| dx$$

$$h = \frac{1}{L} \int_{0}^{L} z(x) dx$$

최대; Rmax (한국규격)

$$R_{\mathrm{m\,ax}} = |z_{\mathrm{m\,in}} - z_{\mathrm{m\,ax}}|$$

RMS; Rrms

$$\epsilon = z(x) - h$$

$$R_{\rm rm\,s} = \sqrt{\frac{\sum \epsilon^2}{n}}$$

 $R_{\rm rm\,s}$ 가 R_a 보다 11% 크다.