Ch. 5 Transient and Steady—-State Response Analysis

5-1 Introduction

Performance comparison
test signal

Typical test signal;
step function
ramp function
acceleration function
impulse function
sinusoidal function

gradually changing function of time —> ramp function
sudden disturbance -> step function

Transient response and steady state response;

transient response; from the initial to the final

steady state response; as t approaches infinity
Absolute stability, relative stability, steady state error;

absolute stability; stable or unstable

eventually comes back to its equillibrium state
critically stable; oscillations of the output continue forever
unstable; output diverges without bound

relative stability;
steady state error;
output of the system at steady state does not exactly agree with he input



Classifications of industrial controllers

- self operated controllers
- two-position or on-off controllers; differential gap, cut-in, cut-out
- proportional controllers

- integral controllers

- proportional plus integral controllers

- proportional plus derivative controllers
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- proportional plus integral plus derivative controllers
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Effect of the sensor on system performance

first order sensor
over damped 2nd order sensor
under damped 2nd sensor



5-2 First order systems

Fig.5-1

RC circuit, thermal system
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ct)=1—e VT , fort>=0

at t=T, c¢(T)=1—e '=10.632
fro t >=4T , output is within 2 % error

Unit ramp response
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time response;
ct)=t—T+Te T, fort >=0

error signal;
e@)=rit)—ckt)= 1701 —eit/T)
el)=1T

Unit impulse response

1
)= 1
c(t)iie_t/T, for t>=0



5-3 Second order systems
servo system
Fig.5-5

output position: ¢

input position : r

JetBe=T
JS2C(S)+BSC(S) = 7(s)

C(s) K K/J

R(s)  J+Bs+ K S+ (B/J)s+ (KT

Step response of 2nd order system

C(s) _ K
R(s) JsP+ Bs+ K

K_ o B_ _
Let 7 W g 2w, =20 ,
B. 2\JK
C(S) Wy

(1) Underdamped case ( 0<t<1 )



(2) Critically damped case (1=1)

(3) Overdamped case (>1)






Definitions of transient response specifications

time domain spec.
for unit step input, at rest initially

(1) Delay time , £,

(2) Rise time, ¢,

(3) Peak time, £,

(4) Maximum overshoot, M,

(5) Settling time, £,

(1) Delay time , f;; until half the final value
(2) Rise time, ¢, ; underdamped: 0% to 100%

overdamped: 10% to 90%
(3) Peak time, £, ; until the first peak of the overshoot

(4) Maximum (percent) overshoot, M, ;
c(t,)—c(eo)
M= 00%
» c(co)

indicates relative stability of the system

(5) Settling time, £,

until to reach and stay within a range (2% or 5%) of the final value

* comments;

transient response; sufficiently fast and damped

0.4<<0.8

Second order systems and transient response specifications
(underdamped)

Rise time; £,

¢
¢

=> coswyt, + ———=-sinw,t, =0
, g 2

1 4, W —
t, = —tan” '( dy=T B
Wgq e Wq

(w,t

ct,)=1—e " (cos (wyt,)+ sin(wyt,)) =1




Peak time, £, ;
dc o . Wy, —CQuut,
Fra (smwdtp)im e 0

sinwgt, =0
=> wgt, = 0,m,2m, 37

1/2 cycle of the damped oscillation frequency

Maximum (percent) overshoot, M, ;

at peak time ¢,= a)i
d

Mp = c(tp)* 1

e Cw, (7/w,) (

cosm+ ﬁsmﬂ)

—o/wgm :e_C/‘/l_CZW

Settling time, £,
— Cu,t /1 _ 2
c(t):1—€—sin(wdt+tan_117<)
Vi—=¢ ¢

;2% criterion

; ©% criterion



* Servo system with velocity feedback

C(s) _ K
R(s)  Js*+(B+KK,)s+K

B+ KK,

- 9VEKJ

Impulse response of 2nd order systems

2
n

s*+ 2(w,s + wi

w

)= %é@e@”tsin((wn Vi—)t)

=1 ;
C(t) _ wit@iw”t
Wl
_ W (= V@Dt W (V1w
c(t) B

maximum overshoot for the unit impulse response (underdamped case)
1 V1-— CQ

tan= ———

at t=



5-4 Higher-Order Systems

for unit step response
Transient response

Cl(s) _ p(s)d(s)
R(s) q(s)d(s)+p(s)n(s)
bos™ +bys™ e +b, s+,

= n n—1 ’ (mén)
ags t+as +---s+a,_;sta,

C(s) K(s+2)(s+2y) - (s+2,)
R(s) (s+p1)(s+p2)-~- (S+Pn)

for a unit step input

C(s)= L4 i %

s Zistp;

closed loop poles;
left half s plane; the relative magnitude of the residues

=> relative importance of the component
pair of closely located poles and zeros; effective cancel each other
very far left from origin; ignore

=> approximate as lower order

real poles and comples conjugate poles

KH(s-l-zi)
Cs)= p Zjl , qt2r=n
sH(s +pj)1__[(52+2(kwks+wi )
j=1 k=1

if closed loop poles are distinct,

C’(s)za-i-i] a; +ibk(5+gkwk)+ckwkvl_C2

s Zistp T s2+2¢ w8 + Wi
q T r
c(t)=a+ Eaje Pty Ebke C*w*tcoswk\/l—ﬁ t+ Ecke C“U”Lsina)“/l—g“i t, t>0
j=1 k=1 k=1

response; exponent curve + damped sinusoidal
response type ; due to closed loop poles

shape; due to closed loop zeros
poles of input R(s) ; yields steady state response
poles of C(s)/R(s) ; affects transient response



zeros of C(s)/R(s) ; affects on the magnitude and sign of the residues
Dominant closed loop poles
responses, determined by the ratio of the real part of the closed loop poles
and the relative magnitude of the residue

ratio of the real part > 5, no zeros nearby => poles near jw axis are dominant

dominant closed loop poles; usually complex conjugate

Stability analysis in the complex plane
poles on the right half s—plane; unstable

by the location of the closed loop poles
property of the system itself ; not from the driving function

poles on Jjw axis; oscillatory, if noise exist, amplitude of the oscillation increse



5-7 Routh's stability criterion
stability
Routh’s stability criterion

absolute stability from the coefficient of the characteristic eq.

(1) ays"+ays" '+--+a, s+a, =0, a, =0

n

(2) if any a,; = 0 or a;{0 with at least one positive coeff.

=> root or roots with positive real part
-> unstable

(3) if all coeff. are positive,
s" ag ay ayag -
s""layazasag -
§" 72y by by by -
"7l ey
"

“tdy dydsdy -

-2 1
: Dl 1 s €1 €5
fi a
a] CLQ - aoa?) a1a4 - a0a5 a1a6 - a0a7
where by =———, by=———, by=——— | etc
a; a; a;
o = byaz — a,b, o = biaz — a,bs o = bya; —a,by otc
1 5 2 ) 3 5
by by by

Theorem; The no. of positive real roots = no. of change of sign of the coeff.
of the 1st column.

Absolute stability Necessary & sufficient condition:

all the coeff. of the charac. eq >0, and all terms of the 1st column of the array >0

Special cases;

(1) if 1st array term is zero, replace it as small positive real ( ¢)

428+ s+2=0

5 1 1
s2 2 2
31 0=c¢€
8() 2

e2] SlE3} ol B3 7} 2o pair of imaginary roots; s == jw



(ii)
$$—3s+2=(s—1)*(s+2)=0

s8 1 -3

52 0=¢€ 2
2

st —3—= 0
€

5" 2

-z
fol
E
oft
o
pocs
dlo

eo 1=} ofg=o 2357} t=w sk 9

o] oAl= F 2¥9 F35 Wso] A&
(ii) if one derived row is all zero,

s° 4251 +245% + 4852 — 255 —50=0

s’ 124—25
st 248 —50
s200

Auxiliary polynomial; )

Let P(s)=2s"+48s>—50

%538)2 853 +96s => s3 row 1is replaced by this coeff.
s 1 24 —25
st 2 48 —50
s2 8 96
s2 24 —50
s1112.7 0

0 —50
=> one root with positive real part

Relative stability analysis

replace s=s —o

Test Routh’s criterion for the s eq.



Application of Routh’s stability criterion to control system analysis

Let’s determine the range of K for stability
C(s) K

R(s)  s(s®+s+1)(s+2)+ K

Characteristic eq.
s'+3s° +3s2+ 25+ K=0
st 1 3 K

s 3 20
s? % K
aa-tx
s K
for stability
Routh’s criterion 2— %K> 0, A>0
14

=> <K< —
0 9



5-8 Effects of Integral and Derivative Control Actions on System Performance
Integral control action

remove offset, steady state error
oscillatory response

Proportional Control of Systems

Fig. 5-40

. . 1
for the unit step input R(s)= "

Ts+1 1

Es)= v ws

Steady state error;

: : : Ts+1 1
Cys —}Lfge(t)_EEESE(S)_ISE% Ts+1+K K+1

Integral Control of Systems

T s(Ts+ 1)+ K
_ s(Ts+1)
s(Ts+1)+ K

2
. . Ts+1) 1
ey, = limsE(s) = hmw—z
50 s—0 Ts"+s+ K S



Response to torque disturbances (proportional control)
Fig.5-43

C(s): 1

D(s)  Js*+bs+K,

E(s) _ Cl(s) _ 1
D(s) D(s) J52+bs+Kp

e, =1imsE(s)

s—0
—S T,
= lmQ—_
s—0 Js +bs+Kp S
Ty
K

p

Response to torque disturbances (proportional+integral control)
Fig. 5-44

C(s) s

K
3 2 P
Js" +bs" + K,s+ T

3

Els)=— 5 D(s)

K
3 2 P
Js” +bs” + K,s+ T

K3

if stable,
e, = limsE(s)

5—0
= lim s L
s—0 3 2 Kp S
Js® + bs +Kps+7

7

Derivative control action

Proportional control of systems with inertia load
Fig.5-46

C(S) _ Kp
R(s) J52+Kp

=> oscillate indefinitely



Proportional + derivative control of systems with inertia load
Fig. 5-47

o)  K,(1+ Tys)
R(s)  Js+ K, Tys+K,

=>  two roots with negative real part
Proportional + derivative control of 2nd order systems
Fig.5-48

Cls) _ K,+ K;s
R(s)  Js*+(B+ K,)s+ K,

steady state error for a unit ramp input
_ B
e =2

58 K

»
Characteristic eq.
Js* +(B+ K;)s + K, =0
damping ratio:
B+ K,
2y K, J
B; small, Kp ; large, Kd; large
=> ey, M, small,



5-9 Steady state errors in unity feedback control system
Classification of control systems

K(Ts+1)(Tys+1)- (T,5s+1)
s (Tis+1)(Tys+1) -+ (T,s+1)

G(s)=

Steady state error

Cls) _ _ G(s)
R(s) 1+ G(s)
1
1+ G(s)R(S)

using final value theorem

E(S)=

L . . sR(s)
¢ss = lime(t) = lim s B(s) = lim =7~

Static position error constant K,

for a unit step
let K,=limG(s)= G(0)
s—0

1 1

— 1 S —
e =limymey =977

p

; 0 K —li K(Tas+1)(Tbs+1)---_K
or type 05 Ay = M ) (Tys + 1)

. K(T,s+1)(Ths+1) -
- for type 1 ; K, =lim— = o0,
550 s (Tys+1)(Tys+1) -

Static velocity error constant A,
for a unit ramp input
let K,=limsG(s)
5—0

1 1

. S
e =lmimry 5= %

v

sK(T,s+1)(Tys+1)--

- for type O ; K:EE}/OI (T18+1)(T25+1)"' =0

; . sK(Tas+1)(Tbs+1)---_K

or type L Ay = M e Tys + 1)

sK(T,s+1)(Tys+1)--
)

- for type 2 ; K,=lim
Y 50 s (Tis+1)(Tys +1) -

— OO

)

for N =2



Static acceleration error constant K,

. . t?
for a unit parabolic input; r(t) = o for t =0

=0, for t<0
let K,=lims*G(s)
s—0
e, = lim—t—~—1—
5% s—0 ]-+ G(S) 83 [(a
; 0: K-l SSK(Tys+1)(Tys+1) - 0
ortype 05 K = M o (s + 1)
. SK(T,s+1)(Tys+1) -

- for type 1 ; K, =Ilim =0

a0 s(Tis+1)(Tys+1) -

. SPK(T,s+1)(Tys+1)--
- for type 2 ; K, =lim—;
5—0 8 (Tls+1)(TQs+1)---
)
(

o SK(Ts+1)(Tys+1)--
- for type 3 ; K,=lim—
s—0 s (Tis+1)(Tys+1) -

= oo, for N=3

Step Input Ramp Input Acceleration Input
r(t) =1 r(t) =t r(t) = 1/2 t2
Type 0 system co oo
Type 1 system 0 o
Type 2 system 0 0

Comparison of steady state errors in open-loop control, system and closed loop control system

for open loop

AK
= A = —_— .
K=10, AK=1, Ve 0.1

1
=1—— AK)=1—1.1=—0.
e 1K(K+ K)=1-1.1 0.1

58

for closed loop
1 1

1+6(0) ERLIPIONS

€

. 1
1+110

=0.009



