
Ch. 3 Mathematical Modeling of Dynamical Systems

3-1 Introduction

Dynamics of many systems may be described in terms of differential equations.

Mathematical models;

many different forms

state-space

transfer function

Simplicity v.s. accuracy

simplified model

complicated model

Linear systems

principle of superposition <=> cause and effect is proportional

Linear time invariant system and linear time varying system

constant coefficients differential eq.

function of time coefficients differential eq. ; spacecraft

Nonlinear system

principle of superposition not applied

saturation

dead zone

backlash

square law

Linearization of nonlinear system

small signal

around equilibrium point



3-2 Transfer function and Impulse response function

Transfer function; of linear time invariant differential equation system

Differential eq.

ration of Laplace Transform of output to that of input with initial cond. are zero.

a 0y+a 1y+⋯+a n - 1 ẏ+a ny=b0x+b1x+⋯+bm-1ẋ+bmx (n≥m)

Transfer ft'n G(s) =
Y(s)
X(s)

=
b0s

m+b1s
m-1+⋯+bm-1s+bm

a 0s
n+a 1s

n - 1+⋯+a n - 1s+a n

nth order system

Comments;

Linear time invariant differential system

(1) a mathematical model; operation method b.t.w. output variable v.s. input variable

(2) system property; independent of the input magnitude

(3) including units; not physical structure

(4) using T.F., output can be studied

(5) experimentally obtained T.F.

Mechanical system

ex; satellite attitude control

(1) write the differential eq.

(2) Laplace transform assuming all initial cond. are zero

(3) T.F.; ratio b.t.w. Θ to Τ

Convolution Integral;

Y(s)=G(s)X(s)

y(t) = ⌠
⌡

t

0
x(τ)g(t-τ)dτ

= ⌠
⌡

t

0
g(τ)x(t-τ)dτ

where g(t)=0, x(t)=0 for t<0

Impulse response function

for unit impulse input

Y(s)=G(s)

impulse response function or weighting function

g(t)=ℒ-1 [G(s)]



3-3 Block Diagrams

composed of many component

Block diagrams;

pictorial representation; components; signal flow

easy operation

functional block; symbol for the mathematical model; input to output

signal; by arrow

main source of energy; not explicitly

many kind of block diagram for a system; point of view

Summing point;

Branch point;

Block diagram of a closed loop system;

Open loop transfer function and feedforward transfer function;

Open loop TF =
B(s)
E(s)

=G(s)H(s)

Feedforward TF =
C(s)
E(s)

=G(s)

Closed loop TF =
C(s)
R(s)

=
G(s)

1+G(s)H(s)



Closed loop system subjected to a disturbance

CD(s)

D(s)
=

G 2(s)

1+G 1(s)G 2(s)H(s)

CR(s)

R(s)
=

G 1(s)G 2(s)

1+G 1(s)G 2(s)H(s)

C(s)=CR(s)+CD(s)=
G 2(s)

1+G 1(s)G 2(s)H(s)
[G 1(s)R(s)+D(s)]

in case; |G 1(s)H(s)|≫1 and |G 1(s)G 2(s)H(s)|≫1

disturbance rejected

H(s)=1; unity feedback, input=output

Procedure for drawing a block diagram

Block diagram reduction;

The product of the TF in the feedforward direction must remain the same.

The product of the TF around the loop must remain the same.

Ex 3-1)



3-4 Modeling in state space

Modern control theory; to increase accuracy

MIMO, nonlinear, time varying

time domain approach

Conventional control theory; SISO, time invariant

frequency domain approach

State, State variables, State vector, State space

state variables; smallest set of variables that determines the behaviors for t>=t0

State space equations;

input variable

output variable

state variable
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Ex 3-3)

    




 















 




 




 
















 

   



 








Correlation between T.F. and state space eq.

   
  

      
    

assume    ;

(sI-A)X (s)= BU(s)

        

       

   
 

Comment;

    == characteristic polunominal of G(s)

eigen value of  are identical to the poles of G(s)

Ex 3-4)



3-5 State Space Representation of Dynamic Systems
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state variables;
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state variables;
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3-10 Linearization of Nonlinear Mathematical Models

utilize numerous linear system techniques

Expansion into a taylor series about the operating point

neglecting nonlinear terms

* Linear approximation of nonlinear mathematical models

(1) nonlinear system; y(t)= f(x)

operating point; x, y
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neglect high order terms

  

 



  

   

(2) nonlinear system;     

Taylor series expansion;
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