Ch. 3 Mathematical Modeling of Dynamical Systems

3-1 Introduction

Dynamics of many systems may be described in terms of differential equations.

Mathematical models;
many different forms

state—space
transfer function

Simplicity v.s. accuracy
simplified model
complicated model

Linear systems
principle of superposition <=> cause and effect is proportional

Linear time invariant system and linear time varying system
constant coefficients differential eq.
function of time coefficients differential eq. ; spacecraft

Nonlinear system
principle of superposition not applied

saturation
dead zone
backlash
square law

Linearization of nonlinear system
small signal
around equilibrium point



3-2 Transfer function and Impulse response function

Transfer function; of linear time invariant differential equation system

Differential eq.

ration of Laplace Transform of output to that of input with initial cond. are zero.
aytayt--+a, yta,y=bx+hbxt--+b, xtb,x (n>=m)

We _ bs"+bs" '+--+b, stb,
X(s) ay+as" '+--+a, sta,

nth order system

Transfer ft'n G(s) =

Comments;

Linear time invariant differential system

(1) a mathematical model; operation method b.t.w. output variable v.s. input variable
(2) system property; independent of the input magnitude

(3) including units; not physical structure

(4) using T.F., output can be studied

(5) experimentally obtained T.F.

Mechanical system
ex; satellite attitude control

(1) write the differential eq.
(2) Laplace transform assuming all initial cond. are zero
(3) T.F.; ratio btw. ® to T

Convolution Integral,
Y(9) =G(9X(9)

nH = fOtX(T)g(f—T)dT
= fotg(r)x(t—T)dr

where g(t)=0, x(t)=0 for t<0

Impulse response function
for unit impulse input

Y(s) = G(9)
impulse response function or weighting function

g=£ MGE9]



3-3 Block Diagrams

composed of many component

Block diagrams;

pictorial representation; components; signal flow
easy operation

functional block; symbol for the mathematical model; input to output
signal; by arrow

main source of energy; not explicitly

many kind of block diagram for a system; point of view
Summing point;

Branch point;

Block diagram of a closed loop system;

Open loop transfer function and feedforward transfer function;

Open loop TF = ggg = G(9H(9)

Feedforward TEF = gg 3 = G(9)
Closed loop TF = e _ G(s)

R(s) 1+G(9H(s)



Closed loop system subjected to a disturbance

CD(S) _ GZ(S)
D(s) 1+ G,(9 Gy(9) H(9)

Ce(9 G,(9 G,(9
R(s) 1+ G(9G,(9H(9

Gy(9)
1+ G,(9 G,(9 H(9)

(9= C9+ Cp(9= [G (9 R(9)+ D(9)]

in case; |G(9 H(II>1 and |G,(9 G,(9 H(9I>1

disturbance rejected

H(s) =1; unity feedback, input=output

Procedure for drawing a block diagram

Block diagram reduction;
The product of the TF in the feedforward direction must remain the same.
The product of the TF around the loop must remain the same.

Ex 3-1)



3-4 Modeling in state space

Modern control theory; to increase accuracy
MIMO, nonlinear, time varying
time domain approach

Conventional control theory; SISO, time invariant

frequency domain approach

State, State variables, State vector, State space

state variables; smallest set of variables that determines the behaviors for t>=t

State space equations;
input variable
output variable
state variable

1:1 =f, (xlixQ’ ---,:cn,ul,UQ,---,ur,t)

Ty = fy (xl,xQ, T Uy Uy Uy )

xn:fn (.1317.132’ "'7x717u17u27".’u7"t)

D=9 (951‘952‘ '”7xn7u17u27“"ur’t)
Yn = 9, (xlﬁ,IQ, '"’xn’ul’u%“'?uﬂt)

Tq (t) Yq (t) fl ( ) 91( ) Uq (t)

z(t) = y(t) = flz,u,t)= : g(t)= u(t) =
SL'” (t) ym (t) fn(' ) gm("") u7 (t)



Ex 3-3)

my+by+ky=u




Correlation between T.F. and state space eq.

z=Az+ Bu

y=Czx+ Du
sX(s)—z(0)=AX(s)+ BU(s)
Y(s)=CX(s)+DU(s)

assume z(s)=0;

(s[— A) X(9= BU 9
Y(s)=[C(sI—A) '*B+D|U(s)

G(s)=C(sI—-A) 'B+D

_Q(s)
|sI— Al
Comment;
|sI— A| == characteristic polunominal of G(s)

eigen value of A are identical to the poles of G(s)

Ex 3-4)



3-5 State Space Representation of Dynamic Systems

(n)

« y+a, y+--+a, y+ta,y=u

(n-1)

state variables;

=Y
Ty=y
T3=Y
(n-1)
X, =y

0

X 0

x=|% A=]| :

); 0

” —da, —a
X

(n)

(n-1)

0 - 0
1 0
: : B=
0 1

—a, —a

(n=1)

« y+a, y+--+a,,y+a,y=byu+b u +---+b _u+bu

state

T

X

n

variables;

1 =y~ Bou )
Ty = y— Byu— fiu = x,— ﬁl_u

Ty = é* ﬁo&* 51@* Bau = Ty~ Byu

(n-1) (n-1) (n-2)

= y _ﬂo u _ﬂl u _"'ﬂrszL'l_ﬂnflu:xnfl_ﬂnflu

By = by
B =b; — a5
By = by — a1 8, — ayfy

ﬂn = bﬂ - alﬁn* 1 7“'7an,7161 - 0’7),60

A R
2 A= : :
: 0 0
Ty —a
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y=[10 - 0| |+ B
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3-10 Linearization of Nonlinear Mathematical Models

utilize numerous linear system techniques
Expansion into a taylor series about the operating point
neglecting nonlinear terms

* Linear approximation of nonlinear mathematical models
(1) nonlinear system; ()= Ax)

operating point; X, ¥
y=f(z)

oy 4f - 2
—f(x)+%|,;(:c—x)+—d—|f(x—x) +e

neglect high order terms
ey A~
y_f(l')"' de |;<x fE)
= §+ K(x— 5)

y—y=K(x—x)

(2) nonlinear system; y= f(x, z,)

Taylor series expansion,

y=1Grm)+ =)+ = )
1,0° — PR — —, 82
T 5[8—;;(3;1 ) 2o =)o xz)a—é(%

y:f(-TlaI2)

PRI

6.%1 T1r Ty
_of



